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Specific objectives

The specific objectives that have to be acquired at the end of the lecture are summarized in the following
table which can be used for evaluating your progress.

Progress | Topic
Energy conversion system model
000000 | Definition of the system boundaries
000000 | What is a state variable, what are the degrees of freedom of a thermodynamic state
000000 | What is a constitutive equation and how a thermodynamic model works
000000 | Define the process units
000000 | State the energy and the mass balances of a unit
000000 | State the modeling equations of a unit
000000 | State the assumptions of a model. Be able to explain the level of detail and complexity trade-off
Realize a degree of freedom analysis, define the specifications, what are dependent and independent
000000 .
variables
Solve a unit model using a sequential approach, be able to explain the pro and cons of the sequential
000000
approach
000000 | Explain the solving methods that can be used in a sequential solving approach
Solve a unit model using a simultaneous approach, be able to explain the pro and cons of this
000000 | approach. What are the more important conditions for using a simultaneous approach. How does
it compare with sequential approach. How to solve a simultaneous model.
Solve a Flowsheet
000000 | Analyze the degrees of freedom of a flowsheet
000000 Apply the Motard method to define a sequence to solve a sequential modular simulation problem.
What are the difficulties of the sequential approach.
000000 | Numerical methods for solving the sequential problems
State a simultaneous solving problem for flowsheeting, what are the necessary conditions and the
000000 | . . . .
difficulties of using a simultaneous approach
000000 | Numerical methods for solving simultaneous problems.
000000 | Pro and cons of simultaneous and sequential approaches
Thermo-economic objective functions
000000 | Different type of thermo- economic optimization problem
000000 | Estimate the investment of a process flowsheet and annualize the investment
Formulate a thermo-economic objective function: operating cost, efficiency, investment, total cost,
000000 . . . :
environmental impact, life cycle impact.




Specific objectives

Progress | Topic
Optimization problems
000000 | Define the different possible use of optimization in process flowsheeting
000000 | State a problem of parameter identification
000000 | What is the data reconciliation
How to analyze the redundancy of a system: overspecification, missing measurements, just calcu-
000000
lable systems.
000000 | Stating an optimization problem: black box, simultaneous, hybrid methods
000000 | Pro and cons of the different approaches
Describe the different methods to solve optimization methods, what are the pro and the cons of
000000
each of them
000000 | Solving an unconstrained optimization problem
000000 | Solving a multi-variable unconstrained optimization problem
000000 | Solving a multi-variable constrained optimization problem
000000 | Solving a MILP optimization problem
000000 | Solving a problem using heuristic methods
000000 | Stating a multi-objective optimization problem
000000 | Choosing a optimization solving method
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Chapter 1

Introduction

In this chapter the basic notions for the modeling and optimization of energy conversion systems are
introduced: systems, models, state variables and degrees of freedom.

1.1 Introduction

This course deals with the modeling and the optimization of industrial energy systems. An industrial
energy system may refer to a whole process, a part of a process or set of processes that generate through
energy conversion other forms of energy or consumer goods. These processes are for example:

1. Processes for the production of electricity: today over 80% of the world’s electricity generation is
achieved through thermal conversion of the energy resource.

2. Energy conversion processes: for example heat pumps, hydrogen production processes, biomass or
coal gasification.

3. Chemical and petrochemical processes.
4. Food industry processes.

From a thermodynamic point of view, the common point between these processes is the transformation
of raw materials into products and by-products through a set of operations (Figure IT). In a general
way, this system can be described considering that the conversion of raw materials and energy occurs
through a set of interconnected equipments:

e heat exchangers, evaporators, condensers

distillation columns, cyclones, filters, absorbers

e boilers

gas turbines, motors
e compressors, turbines
e reactors, reformers, ...

Each equipment unit performs its tasks through series of transformations of thermodynamic states: heat
exchange, separation, reaction,... The different operations can be strongly integrated in one single unit.
For an engine, for example, chemical reactions (combustion and production of pollutants), diffusion and
mixing, heat exchange and expansion occur simultaneously. From a system point of view, it is possible to
gather the production units in different sub-systems. The main operations will be grouped in sub-systems
called processes, which will often rely on production supports: water, solvent, catalysis... The preparation,
treatment, distribution and recycling of the production supports constitute as well sub-system (process)
of the main system:
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hot water network

filters, filters clean-up

catalyst regeneration
¢ packaging, bottles washing, ...

In industrial processes, the thermodynamic state changes are achieved through the energy supply from
outside the system. Consequently, this energy needs to be converted and distributed in an appropriate
form for the required transformation. It will be in different forms: electric, mechanic, thermal,... The
operations of the transformation of energy resources into useful energy are grouped in a sub-system called
energy conversion that includes:

e boilers

gas turbines, combustion engines, electric motors

steam distribution, steam turbines
e heat pumps, refrigeration cycles
¢ hot oil network,...

In such transformations, the resources (i.e feedstock and energy) are not fully converted into the final
products and by-products, but are also present in the emissions and in the losses. The waste produced
by the process is often treated, and, if possible, recycled before being disposed, for the protection of the
environment, but also for economical reasons. The system will therefore include several sub-systems for
waste treatment, including:

e waste water treatment
e climination of solvents residuals
e sieving and filtration systems

e gas treatment systems: scrubbers, filters, catalytic systems,...

Energy

R

\
| |
1 |
Resources | '
q‘ I Energy
1 |
| | Products
- )I I By-products
| |
| |
: Waste treatment :
\ Y}
) Waste

Figure 1.1: Integrated energy system.
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All these transformations follow the first principle of thermodynamic (i.e. energy conservation) and the
second principle of thermodynamics (i.e. transformations occur with an increase in entropy in an iso-
lated system). The entropy can be seen as a measure of disorder. The economic indicator defining the
performance of the plant, can be expressed by:

Profits — Incomes-Operating costs-Investments

where the incomes are the results of the sale of all products and by-products, the operating costs
represent the expenses relative to the operation of the plant (i.e. the purchase of raw materials, energy
and production supports, the cost of emissions and waste, the costs of maintenance and taxes), and the
investments are the financial means required for the purchase of all the equipments. These costs need to
be expressed in a coherent monetary unit (for example CHF (2014) /year).

Besides the economic performance, which is highly dependent on the economic position of the investor
and the socio-economic context, the engineers use different performance indicators that rely on thermo-
dynamic values defining the state of the process. Some examples are the energy efficiency (ratio energy
in the products/energy input), the mass conversion (ratio kg of products/ kg of raw material) and the
exergy efficiency (ratio exergy in the products/exergy drawn from the resources). The evaluation of these
indicators allows the engineers to better understand the energetic and exergetic aspects of the processes
they investigate, and to propose improvements with the objective of increasing the performance. More
details about the notion of exergy are provided in [3, I4].

Nowadays, there are challenges related to the sustainable development of our society, besides the eco-
nomic challenges related to the profitability of an industrial process. The manufacturers need to try to
maximize the performances of their production units, in order to satisfy the constraints of the Kyoto
agreements, which aim at reducing and stabilising the CO2 emissions. Consequently, the target is to
maximize both the efficiency and the economic profits.

In this context, the engineers develop on the one side increasingly complex energy conversion concepts,
which are based on more and more advanced technologies such as fuel cells. On the other side, engineers
try to exploit the full potential of the existing systems to improve their performances, both in terms of
energy conversion efficiency and of emissions reduction. The complexity of the implemented systems, and
the optimal use of purchased raw materials and energy, has led to the development of highly integrated
energy systems which aim at the maximum conversion of the exergetic input. Some examples are fuel cell
systems and integrated gasification and combined cycles. In the field of electrical energy production, the
current tendency is to promote the use of renewable energy sources (e.g. biomass, waste) or of low quality
resources (e.g. coal). However, these options also face difficulties: resource variability, pollution risks, risk
of failure, etc.. Moreover, co-generation systems gain more and more importance. Co-generation systems
satisfy the thermal energy demand in an exergetic optimal way by transforming the fuel in high-quality
energy before using the degraded energy in the form of useful heat.

Regarding all these difficulties, modeling and optimization tools play an essential role for mastering
the design, behavior and operation of such systems. The objective of energy systems modeling is to
describe the systems behavior and the influence of the different parameters on the performance, by ap-
plying computer-aided process engineering tools. The modeling tool computes the thermodynamic states
of the various input and output streams, as well as those internal to the plant. Consequently, the overall
performance of the system can be calculated, as well as the performance of each process unit (i.e equip-
ment). In the perspective of decision-making, the modeling tool allows evaluating the impact of decisions
on the performance without recurring to the experimental testing, which may be very expensive. The
modeling tool is very useful to evaluate decisions concerning the system design, because, in this case, an
experimental system does not exist.

The aim of the optimization is to identify the best decisions to be taken in order to improve the
performance of the system. Modeling is an essential step prior to the optimization, as it allows to compute
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the system’s performance. Nowadays, optimization tools are used all along the life of an industrial energy
system, from its design to its decommissioning;:

e In research and development (R&D), engineers use modeling and optimization to identify the best
experimental operating conditions, to conceive the experimental set-up, to exploit the results, to
estimate the change of scale (passing from a pilot plant to an industrial system), etc.

e For the process design, modeling and optimization tools are applied to determine the best con-
figuration, the optimal size of the equipments and the best operating conditions, to conceive the
control system and the optimal strategy of operation, to estimate the environmental impact, and
to evaluate safety and reliability aspects.

e During the process installation, modeling tools are used to verify the performance and the specifi-
cations.

e The process operation is continuously optimized. This is done by first predicting and monitoring the
process and equipments performance, and then by adapting the specifications (planning, predictive

maintenance, online optimization, model-based control, etc.).

e Modeling and optimization tools are also used to optimize the investments for the plant upgrading:
retrofit study, capacity increase, etc.

¢ Finally, modeling tools are applied to conceive the decommissioning of the plant in the most ap-

propriate way.

1.2 Modeling

A model has to calculate and characterize the transformations of thermodynamic states that take place
in the process. Therefore, the process behavior and its operating limits has to be transcribed into a
mathematical model. Considering the energy system as a whole, the mathematical model is an ’operator’
transforming the inputs into output values (Figure [3).

Inputs Outputs

> MODEL

Figure 1.2: Model= mathematical transformation.

For the modeling, a distinction must be made between the materials inputs, and the information
inputs. A material input can be an information output, because it is the result of the model resolution.
For example, the amount of fuel entering a system, which can be calculated to satisfy a given heat
demand. The model inputs are the specifications: the demand that the system must satisfy, the raw
materials and resources properties, the characteristics of the environment (e.g. ambient temperature and
pressure, economic data, cooling water temperature, etc.) and the market specifications (e.g. products
quality and by-products emission limit, etc.). The outputs are the products, emissions and wastes (e.g.
different forms of degraded energy and pollutants), the operating costs, the equipment size, etc.. In
addition to the values that characterize the system’s performance, the model will also compute the values
of the variables that characterize the state of the system. The mathematical model of the system can
be represented by Eq. [ where Xyipy: is the value of the output variables and Xjyp,: the value of
the input variables. The complexity is that it is not easy to get an explicit form for the model which
will be described in a general way by a system of equations to be solved as Eq. 2, where X4t are
the variables characterizing the State of the system. The variables Xouiput are a subset of the variables
Xstate-
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Conceptually, an industrial energy system can be represented as a set of interconnected boxes like in
Figure 3. The interconnections represent streams that link boxes between them. Each box, namely a
process unit, represents a mathematical operator (model) which transforms the state of the connected
flows. This mathematical operator represents the thermodynamic transformations by the physical and
chemical phenomena that occur in the unit. The mathematical operator represents thus the mass and
energy balances, as well as the mathematical formulation of the thermodynamic transformation taking
place in the unit: heat transfer, mass transfer, chemical reaction, expansion, compression, etc. Each
connection between two units defines a stream whose state allows to characterize the material and/or
energy it transfers from one unit to another. In an energy system, different types of streams can be

differentiated:

F(Xinput7 Xstate) =0

Xoutput - F(Xinput)

e Material streams representing the flow of material in the pipes

Thermal streams representing heat transfers

Mechanical streams that represent the work

Electrical streams that represent the transfer of electric power

The flow of information may be used to represent the control loops
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Figure 1.3: Flowsheet of the nitric acid process.

The model of such a system will include three types of relationships:

INTRODUCTION
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1. Transfer relations representing the transfer of information between units and therefore the way in
which the units are interconnected. These relationships define for example that the compressor
outlet stream enters the heat exchanger that follows.

2. Modeling equations, which mathematically represent the mass and energy balances, as well as the
physical and chemical transformations that take place in the unit.

3. Thermodynamic binding relations that link state variables between them and characterize the
material stream.

1.3 The model

A model is a set of interconnected modules (units). Each module is characterized by the equations
that model in a generic way its operation; these equations are called modeling equations. A unit can
schematically be represented by Figure 4.

Inputs i Outputs o

unit j

q parameters

Figure 1.4: Schematic representation of a unit.

The modeling equations constitute a set of equations F(Xstate) = 0 categorized into different groups:
e Mass balances

¢ Heat balances

e Sizing equations / performance equations

e etc.

The modeling equations of unit j define a subset of the matrix F(Xgtate) = O:

Fj(Xstate,j) - O (13)

with:
Xstate,j = (Mij, Pij, hij, moj, Poj, hoj, par;)
m;;  flow of the input stream ¢ of the unit j
P;; pressure of the input stream 7 of the unit j
hij molar enthalpy of the output stream o of the unit j
mo;  flow of the output stream o of the unit j
P,; pressure of the output stream o of the unit j
hoj molar enthalpy of the output stream o of the unit j
par;  parameters of the unit j

The connection of two units defines the variables X4t which are shared by the units (d;;j=do if the
input stream ¢ of the unit j is the output stream o of unit k). By describing the interconnections between
units, a set of equations and variables that describe the system modelling are obtained. The number of
modelling equations n, is lower than the number of state variables Xs;qte ny. The difference between the
number of state variables and equations is called degrees of freedom DoF :

DoF =n, —n, (1.4)
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In order to define the state of the system, the DoF has to be determined. To do this, npor equations
are added. These equations are divided into two sets: specification equations and set point equations.

The specification equations n define the conditions that the system must satisfy:
e External conditions: fuels characteristics , ambient temperature, market conditions, etc.

e State of the equipments of the installation: fouling of heat exchangers, expansion efficiency, char-
acteristic curves of pumps and compressors, etc.

e Requirements that the process must satisfy: mechanical power of the turbines, temperature at the
heat exchanger outlet, etc.

The state of the system’s elements are determined by parametric identification based on one or several sets
of measurements that have been rendered consistent by a validation calculation. Based on an appropriate
definition of the state variables, the specification equations can be written in the simple form Eq. 3.

S(Xstate) = OSi(Xstate) Ty — Vsp = O7VZ = 17 sy Mg (15)
with:

S(Xstate)  vector of specification equations
8i(Xstate) element ¢ of the vector S that defines the specification 4

i state variable corresponding to the specification ¢
Vsi value of the specification ¢
N number of specifications

The set point equations relate to the variables which the engineer can manipulate to optimize the
process performance. The value of the set point results from the engineers instructions. These variables
are called decision variables n.. The number n. represents the actual number of degrees of freedom of
the process. Like the specification equations, the set point equations take the form of Eq. [8:

C(Xstate) = Oci(Xstate) T T Ve = O,VZ = 1; cey N (16)
with:

C(Xstate) vector of set point equations
¢i(Xstate) element i of the vector C that defines the set point ¢

T; state variable corresponding to the set point variable ¢
Vei value of the set point ¢
Ne number of set point variables

To be computable, the system must satisfy Eq. 2. This condition is necessary but not sufficient, because
in addition the equations F(Xstate), S(Xstate) and C(Xsiate) have to be independent.

Ndof = MNc + ns (17)

In addition to the knowledge of the state variables, the values of some indicators may also be needed.
These values are determined by equations known as performance equations/linking equations. Each
of these equations is an additional variable. The system of equations which sets linking variables defines
a square system that can be calculated once the value of X4t is known. This set of equations can
include, for example, the calculation of the efficiency or of the profit.

10
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1.4 State variables

1.4.1 State variables of material streams

The transfer of material /mass is characterized, on the one hand, by the extensive variables (e.g. partial
flow or flow) and, on the other hand, by intensive variables (e.g. composition). To characterize the
transfer of energy, several variables can be used: pressure, temperature, total enthalpy, mass or molar
enthalpy, entropy, etc.

From a thermodynamic point of view, a stream of n, substances will be completely characterized by
fixing the value of n. extensive variables (with n, >1) (e.g. flow), and 2 4+ n, — n. intensive variables.
Then the other variables can be calculated based on the thermodynamic state equations. For example,
a steam flow (mono-substance fluid) is fully characterized by fixing its flow and two intensive variables
which characterize its thermodynamic state: for example the entropy and pressure. By the thermody-
namic relations, other state variables can be calculated based on the value of the two chosen variables.

It should be noted that the choice of the independent variables defining the thermodynamic state of a
fluid has to ensure that:

1. The variables are independent (i.e. choose at least 1 extensive variable).

2. The thermodynamic equations allow to represent the thermodynamic state in a bi-univocal way.
The choice of the temperature and pressure as state variable to represent the thermodynamic state
of water is not valid if a phase change takes place (see Figure I3). At the saturation pressure,
the same temperature corresponds to several enthalpy states (between liquid and saturated vapor)
corresponding to different vapor fraction values. If a phase change occurs, it is therefore necessary
to fix in addition to the temperature another variable, either the vapor fraction, or the enthalpy, in
order to determine the thermodynamic state.

550 [~ T T

~
%150 s B
= /

1 1 1 1 1
-2000 -1500 -1000 -500 1]
H(kJ/kg)

Figure 1.5: Temperature-Enthalpy diagram of water.

1.4.2 State variables of thermal streams

A thermal stream (heat stream) is characterized by the amount of energy that is transferred. It is
commonly expressed per unit of time thus defining the transferred power. In some cases, the stream
may be characterized by its temperature level, although this definition is is only indicative and cannot
be generalized.

11
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1.4.3 State variables of mechanical streams

A mechanical stream is characterized by the power and the speed of rotation of the shaft.

1.4.4 State variables of electrical streams

An electricity stream is by analogy characterized by its intensity and its tension and or power.

1.4.5 Variables of unit models

The parameters of models are variables that describe the operation of the unit, for example the operating
pressure, pressure loss, mechanical power, the heat exchange area, etc. The definition of these parameters
is linked to the modeling equations. Their choice may have a considerable impact on the model resolution.

1.4.6 Which state variables to use?

State variables are required for the model calculation. Due to the number of degrees of freedom of the
concerned state, it is important to choose the independent variables and those that will be calculated by
the thermodynamic model. If the choice of the variables is completely free for the model establishment
the following criteria are recommended to make the best choice.

Choice of an intensive variable rather than extensive variable

Molar or mass quantities are preferred to total quantities, using only one flow rate quantity. This is jus-
tified by the fact that the thermodynamic quantities are calculated in molar values. This allows to avoid
the degeneration of the thermodynamic state when the flow is zero. The calculation of the temperature
on the basis of the total enthalpy may be impossible when the flow is zero. In this case, the equation is
undetermined, which is not the case with the molar enthalpy, even if the state does not exist.

Make sure that the variables represent the state in bi-univocal way

Although the thermodynamics are developed as a function of the temperature and pressure, the choice
of the molar enthalpy will be preferred to that of temperature in the case of a mono-substance fluid.
The temperature does not completely characterize the saturation and an additional variable (the vapor
fraction) must be given to calculate the enthalpy. On the other hand, the molar enthalpy and pressure
perfectly characterize the enthalpy content of the stream. The choice of the molar enthalpy is thus jus-
tified.

The total enthalpy is calculated by Eq. [C=:

H; = h; - 1 (1.8)

and the temperature by IT9:

T; = f(hi, P, ;) (1.9)

The function f(h;, P;,x;) corresponds to a thermodynamic calculation of the equilibrium in fixed molar
enthalpy, pressure, and composition.
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Chapter 2

Thermodynamic properties

This chapter introduces the principles for the calculation of the thermodynamic properties of a stream.
The key elements are the constitutive equations.

2.1 Introduction

The thermodynamic models allow to represent a set of thermodynamic properties of a stream with n.
compounds based on the knowledge of n. + 2 state variables. Thermodynamic relationships are repre-
sented by equations of state which are generally expressed in terms of mass or molar magnitudes. These
are mathematical expressions of the well-known diagrams from the thermodynamics: T-s, h-s, p-v, etc.
diagrams.

Typical thermodynamic properties calculated by the thermodynamic model (i.e. constitutive equations)
are:

e Density, specific volume (v)

Enthalpy (h), entropy (s), specific heat (cp)

Viscosity, thermal conductivity, diffusion coefficients, surface tension

Phase equilibrium (L-V, L-L, L-L-V)

— Saturation point, dew point
— Heat of vaporization
— Saturation pressure

— Phase distribution coefficients
e Chemical reactions

— Heat of reaction

— Equilibrium constants

The thermodynamic models mathematically represent the properties and interaction forces. The ther-
modynamic properties are related to the energy storage mode in molecules. The different types are:

¢ Binding energy between atoms

— Heat of reaction

— Heat of formation

13
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— Equilibrium constant
e Energy of the molecules

— Translation: perfect gas

— Rotation and vibration properties defining the contributions to cp, enthalpy and entropy
e Interactions between molecules

— Attraction and repulsion between the molecules which are represented by the equations of
state. These allow to calculate the mixing properties by introducing corrections to perfect gas
law and which are important for calculating the transport properties and the phase changes.

The properties of the mixtures are determined on the basis of the thermodynamic properties of pure
substances. These are obtained from literature. For well-known substances, such as water, air and C'Os,
the data have been compiled and very precise empirical equations have been established. For others,
general equations are developed based on a limited number of properties and on the observation that
for similar substances the properties are identical in reduced coordinates. The properties that should be
provided for a substance are:

e Critical properties: temperature, pressure, density

e Acentric factor

Boiling temperature and enthalpy of vaporization

Fusion temperature and enthalpy

Enthalpy and the free enthalpy of formation

Correlations can be used to estimate the values of the missing parameters based on these data. One
should however be aware that for a substance the specific values are better than those obtained with the
correlations. Most modeling software offer thermodynamic models and a database of substance proper-
ties. For example, NIST (http://webbook.nist.gov) or DIPPR http://www.aiche.org/dippr).

When using these databases for the development of a model, one has to verify the sources of the data from
the database and if necessary verify that the validity range (temperature, pressure and concentration)

corresponds to the one of the model. This is very important because in some cases, correlations with
high exponents are used which can lead to undesirable reverse answers.

2.2 Enthalpy calculation

The equations for calculating the enthalpy of a mixture are given here as an example. For the calculation
of the energy balances, the enthalpy of a gas must be assessed on the bagis of the temperature and
pressure. For an ideal gas, the following formulas are used.

2.2.1 Gas enthalpy

Higd<T7 P, xi) = ZAHi(TO) + /jc: <Z Li Opi<T)) -dT

It should be noted that the ideal gas enthalpy does not depend on the pressure.
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2.2.2 Liquid enthalpy

The liquid enthalpy is assessed based on the gas properties and on the vaporization enthalpy which can
be assessed with the Watson formula. The temperatures are expressed in Kelvin and the enthalpy of
vaporization is calculated with regard to a reference with an known vaporization enthalpy and tempera-
ture. In most cases, the reference temperature is the boiling temperature. The scale exponent 0.38 can
be used as approximation if the exponent of the substance is unknown.

Terit _ >O.38

_ b
A0, (1) = Aty (1) - (o=

The enthalpy of the liquid is given by:

(T, P.x;) ZAH T°) /T (Zwi-Cpi(T)> AT =" Ay, (T)

2.2.3 Enthalpy of liquid-vapor mixture

If the vapor fraction « is known, the enthalpy of the liquid-vapor mixture is calculated by the sum of
the enthalpy of the liquid and the vapor. The enthalpy of the liquid H!,(T, P,z!) and of the vapor
HY/(T, P,z}) are calculated for different liquid and vapor compositions obtained from the liquid-vapor
equilibrium calculation.

H (T, Pya;) = a- HY(T, P,xd) + (1 — ) - Hy(T, P,z)

2.3 Liquid-vapor equilibrium calculation
The thermodynamic model is composed of:
e Equations: f(variables, parameters)=0, mass and energy balance, equilibrium conditions
e Coherent choice of thermodynamic laws (equations of state or correlations) setting the model va-
lidity range and of the necessary data.
Example of state equation: Soave equation. The Soave equation of state is given by:

RT a(T)
V—b V-(V+b)

P =

with
a=a, [1+ (048 + 1574w — 0.17602)(1 — VT;)]?
= 0. 42748(RT<)
b = 0.08664 2L
Several auxiliary variables are defined Z = 1};¥, A= 4 I‘%:,{D) s and B = b P . The values of Z are solution of

the equation Z% — Z%2 + (A — B — B?)-Z — A- B = 0. With these varlables, the fugacity coefficient can
be calculated:

1%
Z-1 A Z+B
lmp:Z—l—an—/ = =Z-1-In(Z-B)-Zn JZF

o0
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2.3.1 Equilibrium conditions

The partial fugacities of the mixture constituents 7 at 7' and P must be equal in the two phases: fZ = fV.
These variables are generally expressed by the fugacity coeflicient () for the vapor phase and the activity
coefficient (y) and the reference fugacity f* for the liquid phase:

@i yi - P=7i-x fi*

The equilibrium coefficient K; is defined by the ratio of the mole fraction in the vapor phase y; and in
the liquid phase x;:

K= Y F
z, Py
knowing that
®i 901’( »Pv :lja g@)

with:
T and y vectors of molar fractions

O, and ©, vectors of parameters

The number and the values of the parameters depend on the choices made for physical-chemical laws.

Therefore K; can be written as: K; = f(T, P, Z,7,©).

Remember that f;% is the fugacity of the constituent i (pure liquid) at the temperature and pressure
of the mixture or the reference fugacity. This term only depends on T and P. This is the symmetric
convention. If the constituent does not exist in the liquid state, i.e. if it is noncondensable, the reference
is the infinite dilution state. This is the asymmetrical convention. At moderate pressure:

s.(P— ps
£l = 105 L eqp [Uz (RT )}
F =P (2.1)

with:
LS fugacity of pure substance at saturation at the temperature of the mixture
ors fugacity coefficient of saturated vapor under the same conditions
PP saturated vapor pressure of component i (calculated using the vapor equation of state)

If the pressure of the system is chosen as a reference, these relations are not modified. If the reference
state of the liquid is chosen to be that of the pure substance at pressure P" and at the temperature of
the system:

S, PT _ PS
fi*LR _ Pi*LS o*S . exp {”z ( 7 )}
L. (p—pr
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The molar volume of the liquid is generally considered to be independent of pressure, which justifies
the approximations made in the formulas above. In addition, this hypothesis is found implicitly when
calculating ¢ for the component i. The advantage of choosing the reference pressure equal to 0 is that the
two phases have the same reference state. If the reduced temperature (T, = T/T,.) of the component i is
greater than 1, the saturation pressure cannot be calculated, an extrapolated value must be taken or the
fugacity of the liquid has to be calculated in another way. This case is not treated here (i.e. asymmetric
convention). It can therefore be assumed that the relationship: K; = f(T, P, Z,7,0) is known. It is
useful to remember that there are various approximations that represent a set of possible behaviors for

the vapor and liquid phase. Figure 21 summarizes these opportunities.

Ideal solution Non-ideal solution
fhox £ T
Ideal gas P*
K= B Y,
: 1 K=
o' =0 =1 ! P
° Lo K=K =£(P,T)
S
| X
2 S
& = Real gas
< [0 tL
o | o i f
g . I\l = |‘ fo
© f,=y -f ¢ -F Koot
= it it g
E_ 9o .P
8 v ‘
s £ =9 P K=K=fPT)
) £ Y
Non ideal Impossible K,=———
mixture A

Figure 2.1: Vapor and liquid phase approximations.

The fugacities of the pure component in the mixture conditions T and P are noted fi% and f,V for the
liquid and vapor phase respectively. Note that K" (Raoult) and K@ (Ideal) are independent of the phases
compositions and that they give a fairly good approximation of the K values.

2.3.2 Liquid-vapor equilibrium model: Specifications

The equilibrium equations are written:

K; = f(T,P,z,7,0) with i=1,..n (2.3)

The parameters O are determined based on laws that define the partial fugacities of components. The
relations defining K; are:

T, = i with i=1,..,n
The material balances are written according to the two equations below:
Zq
.= _ 2.5
T e (K1) (2:5)
Ki -z

ST A (K - 1)
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These equations are derived from the equations F - z; =V - y; + L - x; with a = V/F the vapor fraction
(1 — a« = L/F the liquid fraction). The variables F, V and L are, respectively, the number of moles
contained in the whole system, in the vapor phase and in the liquid phase. The corresponding molar
fractions are z;, y;, which have to satisfy:

dai—1=0 (2.6)
Y wi—1=0

One of these two equations may be replaced by:

i ui=0 (2.7)

The data of equilibrium problems involve the variables F' and z satisfying the relation ) z; = 1. Con-
sidering that F' = 1 (one mole of mixture) and that z; has been normalized, V =aand L =1 —«a. A
count of the equations and variables leads to Table B

Equations | Numbers | Variables | Numbers
23 n T,Px 2n+2
(2 | n y n

23 n Kl 1

4 2 « -
Total 3n+2 Total 3n+3

Table 2.1: L-V equilibrium: variables and equations.

However, considering the sum of the equations Eq. 4 and Eq. 23, one realizes that the 2 equations Eq.
P28 are not independent. Only one of them should be retained or only the equation Eq. 274. This nor-
mality equation is denoted S(VAR) = 0. The notation "VAR" refers to one of the previously considered
variables, for example P, T, «, etc. The equation S(VAR) = 0 designs any of the equations Eq. 28 or
2. The count is therefore:

(3n+1) equations and (3n-+3) variables

Furthermore, one can calculate any state function (the one that is considered the most often in the
liquid-vapor equilibrium is the enthalpy H ) either for a constituent ¢ in the system or in one of the two
phases, either for all of these. For example:

HZ()(~ZIL’¢~H1-V+(17Q)Z.CE¢'H1-L (2.8)

These equations introduce as many new variables as there are equations. Finally:

(3n+2) equations and (3n-+4) variables

It will thus be necessary to establish two additional specifications. According to the choice that is made,
one distinguishes the equilibrium calculations (or partial vaporization: flash):

at fixed T and P

at fixed P and «, special cases: the calculations of the dew T (o = 1) and bubble T (a = 0))

at fixed T and «, special cases: the calculations of the dew P («w = 1) and bubble P (o = 0))

at fixed P and H

at fixed P and S
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2.3.3 Solving the model equations: Moderate pressure
Analysis of the incidence matrix

In the incidence matrix, the lines represent the equations, while the columns represent the variables. The
non-zero elements of the incidence matrix are those for which the variable 7 is involved in equation j.
The following table represents the incidence matrix for the equilibrium calculation of two components:

Inc. Eq K1 K2 1 ) Y1 Y2 « P T H
23 X X X X X X X

X X X X X X X
| X X X

X X X
7| X X X X

X X X X
PG X X X X
3 X X X X X X X X

Note that only the relationship Eq.EZ8 allows to calculate H. The residual system EZ3-2Z8 forms a irre-
ducible matrix (3n + 1) - (3n + 3). The resolution of such a system of non-linear equations will quickly
become problematic (for example, if n>5). Several methods exist of course to solve such problems
(Newton-Raphson, Marquardt, etc.), but they require an iterative procedure and are subject to many
imponderabilities (dependence on the initial point, relaxation, etc.). In addition, partial derivatives have
to be calculated and the matrices (Jacobian for example) have to be defined on the basis of the problem
to be addressed.

Calculation algorithms

Therefore, it can be investigated if the dimension of the problem of (3n+1) equations can be reduced.
To do this, the problem at given T and P is chosen (EFA). As previously stated, the coefficient K of the
component i can be approximated by: K" (T, P) or K'(T, P) and consequently, if o is approximated,
x(Z) can be computed by the relation Eq. P33, y(g) by Eq. B4 and finally the coefficients K of each
constituent by Eq.ZZ3. This procedure is schematically represented here:

- 3 — 1 — S
K—> aF—z y K

The simplified notation is: K", a — Z,5 — K"

The notation Z, 7 is used because depending on the type of problem, the first or the second expression of
Eq.234 and 23 have to be applied. The variables K depending in general on Z and ¢, an iteration over K
is needed to check that the normality condition is satisfied and « has to be modified accordingly. There
are two nested loops of convergence as illustrated here:

?
TandP: oK' —» % 4§ Kconstant? —> S()=0

t

aC

The expression S(a) = 0 corresponds to ), x; — Y . y; obtained for a value o when the value of K is
converged. This value and eventually others are used to determine the adjusted value of « satisfying the
condition of Eq. 2. The remaining questions are:
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How can the adjusted value of « be calculated to promote the convergence?

Can the convergence of K also be promoted?

Are all the constraints satisfied, for example 0 < o < 17

Is the form S(VAR)=0 (S(«) = 0) always the same in all cases?

Which convergence tests can be performed?

These questions will be addressed after having set the simplified iteration schemes for other equilibrium
calculation types.

Consider the case where T and « are given (ETA)

9
Tanda: PK' —» 2,4 Kconstant? ——> S(P)=0

—

And for P and « fixed (EPA):

9
Pando: T.K' —» 2§ Kconstant? ——> S(T)=0

t

T

The following case is different because it involves the enthalpy (EPH). Looking at the incidence matrix,
it is noted that it is necessary to go through an auxiliary variable. There is a choice between o and T.
These variables can be reversed afterwords.

? ?
—> X, ¥ Kconstant? ——> S(T)=0 —> H(a)=0

—

Hand P: &,

The condition H(«) = 0 is described in such a way that the enthalpy of the system is the one which has
been imposed and called Hy: H(a) = H(T, P,Z,y,«) — Hy = 0.

If an equilibrium has to be solved at fixed T and H, the resolution would be similar to the previous one;
i.e. iterations over the pressure (at the condition that the enthalpy depends on pressure, which is not the
case for ideals and perfect gases).

Convergence criterion, resolution and acceleration

Based on the PT mode, the difficulties which might arise are first described. There is a choice between
three expressions for S(«):
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sz(a)ZleHﬁ;:_ll

%

1*Ki * Z
S3(a)zxizyizl<+a(l()i—11

i
(2.9)
For given values of K, these three functions evolve as shown in Figure EZ2.

S(a)
Sl((x)

S, (@

05 |

S2

2l

Ethane
n-butane
Zl = Zz= 0.5

P=5 bar
T=280K

Figure 2.2: L-V equilibrium calculation.

In this case, the S function is unimodal and is therefore preferred. If S; or Sy is selected, there are
two solutions and with some resolution methods the solution tends towards @ = 0 or a = 1. To find
the solution of S(«) = 0 the Newton method, the ’regula-falsi’ method, the Wegstein method or even a
parabolic interpolation method can be used. Some convergence methods may lead to a value of « outside
the domain 0 < o < 1. Before accepting the value provided by the convergence algorithm, this value has
to be tested, if & < 0 then a =0 or if @ > 1 then o = 1. The convergence tests are of two types:

|S(ak+1) - S(ak)| <€

0" — | < e

These two tests have to be satisfied before completing the calculation. Finally, the promotion of the
convergence of the inner loop must cover each K;. Experience shows that iterations on this loop converge
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quickly by simple substitution. One has to be more careful in the case of highly non-ideal systems where
very complex equations of state are used (Soave, NRTL, UNIQUAC,...). It will be necessary to use
methods like Marquardt or Broyden that will be described later.

2.4 Importance of the correlations coefficients validity limit

To illustrate the importance of the validity range of the correlations, one has to look at the shape of the
equation for the calculation of the enthalpy:

HY(T,P,x;) = Zx - AH;(T°) / (Za} Cpi(T ) -dT

HE(T,Px;) = Y ;- AH;(T°)

b S o T4 @ @+ G )

This equation takes the form of the curve in Figure 223 with the coefficients values taken from literature
[20]. It can be noted that this formula leads to a decrease of the enthalpy with the temperature, which
does not represent the actual behavior of the fluid. Having noticed this anomaly, the authors proposed
other values for the coefficients which represent more adequately the enthalpy at high temperature. It
should be noted that the two correlations give quite different results and that correlation 1 is aberrant.

40000 T T
correlation 1 ——
cg“relation 2 ——

35000 - TN b

/ \
/ \ _

30000 — / N

e
/ ~
/ ~ - \\
25000 / e o
/ // 4 - - \ \
= 10000 [~ / e \ A
/ . \
/ P \
15000 / - iy
- \
/ ~ x
-~ \
/ ~
10000 - / 7 B
;e
~
y —
5000 |- y i
~
~
/
° ~ 1 | | | | | |
500 1000 1500 2000 2500 3000 3500 4000

T

Figure 2.3: Enthalpy calculation based on the correlations [20].
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Chapter 3

Unit models

This chapter explains what a is process unit model and how it is solved. As an example the unit models
of several equipments are illustrated.

3.1 Introduction

The first step of developing a process model (Figure B) is to define the set of equations that describe
the process behavior. This model is established from a list of basic equipments (process units) that are
interconnected. The equations system F(X) of the modeling equations is generated from the units and
their interconnections. Each unit brings its list of equations, which is called unit model. The role of
the engineer who uses a flowsheeting software is to choose the unit models and assemble them. In this
chapter, the common unit models used in energy systems are described (knowing that this list is not
exhaustive).

Thermodynamic state
Constitutive equations

Simulation ‘
_ Equation
fm(Nm TmPn»EmTrp) =0

Simulation equations
eMass balances

eEnergy balances
ePerformances equations

Figure 3.1: Process unit model.

These equations are implemented in a traditional manner in most commercial flowsheeting software, AS-
PEN, HYSYS, gProms, Belsim, etc. Depending on the unit type, the equations are therefore generated
automatically and it is not necessary to define them. However, it is useful to know the principles that
are used in order to verify the pertinence of the model used.

During the models development, the form of the equations and the choice of the variables that are involved
are very important, because they determine the model robustness and the resolution method. The use
of optimization techniques imposes also a compromise between the level of detail of the model and the
complexity of the implemented equations.
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3.2 Types of models

A model consists of a set of equations involving a set of state variables. A unit is represented schemati-
cally in Figure B2.

Inputs Outputs

i Unit

Parameters

Figure 3.2: Unit model.

Equations: n,
material balances n.
energy balance 1
impulsion balance n;
models equations  n,

specifications Ns

Variables: n,
state Nz = (Nour + Nin) - (nc + 2)
parameters Np

internal variables ng

The generic term of the balance equations is:

Accumulation=In-Out+Generation-Consumption

In this chapter, only stationary models are treated. In this case, the accumulation term is equal to zero.
The number of degrees of freedom is equal to npor = n, — n. and represents the number of variables or
the number of additional equations that are necessary for calculating the unit. The simplest form of the
additional equation is the set-point or the specification (z; = x;7°). The incidence matrix (Figure B=3)
is used to identify the number of degrees of freedom. In this matrix, the lines represent the equations
and the columns the variables. In the incidence matrix an non-zero element is written if the variable i
(column i) is involved in the equation j (line j). In this matrix the specification equations are represented

by a line with a single non-zero element. In order to calculate the unit there are two necessary conditions:
e The incidence matrix must be square: as many equations as variables.

e The equations have to be independent. It must be possible to swap the rows and columns so that
a non-zero element appears on each diagonal element of the matrix.

If these two conditions are met, it means that the matrix can be inverted, and the elements on the
diagonal are selected as a pivot (see Gaus-Newton’s method and LU decomposition). To solve the model
the matrix has to be invertible. Consequently, the value of the pivot must not become zero during the
procedure of the matrix inversion. In the latter case, the problem is said numerically singular.
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Mass balance
Energy balance
Model

Specification -

Figure 3.3: Example of an incidence matrix.

3.3 Model resolution

Two strategies for solving a model can be applied: the simultaneous resolution or the sequential resolution.

3.3.1 Simultaneous resolution

For a simultaneous resolution, all the model equations and the specification equations are written. This
produces a system of n. non-linear equations and n, variables (state variables, parameters and internal
variables) to be solved by a suitable method (see Chapter Model resolution). The mathematical expression
is given by:

M(vaXp)
S(Xa, Xp)
IN(X,)

0
0 = F(X)=0(N.zN,)
0

with:
M(X.,Xp) =0 Model equations
S(Xz,Xp) =0  Specification equations

In(X,) =0 Specification equations of the inputs

F(X)=0 System of equations to be solved

Xz State variables of input streams

X, Parameters and internal variables of the model
N, Number of equations

N, Number of variables

Example: Turbine model

Figure B4 illustrates the turbine model. The suffix s represents the specified values. The objective of this
model is to calculate the mechanical power and the state of the output stream, knowing the flowrate, tem-
perature, pressure and input compositions, the isentropic efficiency of the turbine and the outlet pressure.

The model equations are:
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S
mout ’Tout’ Pout ’ XoutV

Figure 3.4: Example: Turbine model.

Mout — My, =0 Mass balance
xiut - xfns =0Vj=1,..,n. Mass balance (composition)
hin — h(T5,, Piny Xin) =0 Constitutive equation: Enthalpy of the input
sin — $(T5, Pin, Xin) =0 Constitutive equation: Entropy of the input
it — h(Siny Pout, Xout) =0 Isentropic expansion equation
hout — hin + 055 - (hin — hi,) =0 Isentropic efficiency equation
Tout — T (houty Pouty Xout) =0 Linking equation: Calculation of output temperature
Wout — M5y - (hin — hout) =0 Energy balance

To these equations, the specification equations are added (inputs and model specifications):
Inputs
Min —mi, =0  Input flowrate
xl —al® =0 Input composition
Tin—T;5, =0 Input temperature
P, — P, =0 Input pressure

Model
Pout — Py, =0 Output pressure
Nis — Nis =0 Isentropic efficiency

3.3.2 Sequential resolution

The principle of the sequential resolution is to associate to each variable the equation that allows to solve
it and to determine the resolution sequence. In this approach, the resolution sequence is determined in
such a way that the equations can be solved successively, one after another. This approach is similar
to the sequence of pivoting, while inverting the matrix of equations, solving for each pivot elimination
a non-linear equation. For this approach, the resolution is formulated explicitly wherever possible. To
calculate the i*" variable of the model, this translates to Eq. B where fi(x;) is a non-linear expression
representing the i*" equation.

Ty = fi*(.”[]j> V_j = 1, ...,’L' -1 (31)

In this approach, the sequence’s resolution depends on the sequence of the matrix pivoting and so on
the list of specifications. In a sequential approach, the input streams are considered as specified, whenever
it is possible. Then a set of specifications representing an operation mode of the unit model is chosen.

Example: Turbine model

For the turbine model given by:
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.8

Mout =  Mip
hi" = h(Tzsvm Pls'rn Xisn)

is s
out h(siTM Pout7 Xout)

hout hln + nfs ) (hln - hZZt)
Tout - T(hout7 Posuta Xout)
Wour = 15y, - (hin — hout)

the incidence matrix becomes:
mout X
xout X
Hin X
Sin X
Houtis x xx
Hout X XX
Tout X XX
W X X X

Turbine example: sequential versus simultaneous approach

The main difference between the two resolution strategies is the fact that for the sequential resolution
it is necessary to define a new resolution sequence when the operating mode changes. For the turbine
example, if the specifications are changed and the flowrate has to be calculated for a given mechanical
power, and an output pressure (Figure B3) a new resolution strategy has to defined, which involves a

reformulation of the model equations and of the resolution sequence.

m

out’

T

out?

m

P

TS

in’

in’

pPs . X5

m

S
out’)<out\

«<

Figure 3.5: Example: Turbine model - New calculation mode.

The modified turbine model is given by:

J Jrs
Tout Lin
s s s
hin — h(Tzn7 P’Ln7 X'Ln)
s s s
Sin S(TinapinaXin)

s s
out h(si’ﬂv Pouta Xout)

hout hin + nfs : (hln - ’tb)itt)
Tout T(hout7 P(fum Xout)
we
Min = hin—hout
mout ml’ﬂ

Another resolution method is to not change the resolution sequence and use an iterative loop for the
promotion of convergence (Figure BH): the model calculates the mechanical power and it changes the
value of the flowrate until the mechanical power is equal to the specified value. This second approach
has the advantage of not having to rewrite the resolution sequence. However, it has the disadvantage of

an iterative loop which may be costly in terms of calculation time.
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Figure 3.6: Iterative loop.

For the simultaneous resolution, only the specification equations have to be modified and the models
equations remain unchanged. The difference also appears if one wants to make the model more accurate
by using empirical equations (Eq. B2) to calculate the efficiency rather than considering it as constant.

ms=a-17+b-1mmn-v+c-(mmn-v):+d (3.2)
with:
T compression ratio
1% average volume (mass basis)

a,b,c,d characteristics of the studied unit

For the simultaneous strategy, the equations defining the efficiency are added to the model equations with
in this case, the definition of additional internal variables (7, 7). At the level of the specifications, the
specification setting the isentropic efficiency as a constant is replaced by the specification of parameters
of the empirical expression.

The corresponding model is:

Mout — 13, =0

sin — 8(Tin, P, Xin) =0
out — P(Sin, Pouts Xout) =0

T~P0ut—P~m=0

= v(TH P X))+ (Tout, Poys s Xout)
v— 5 =0

nis—a-T+b-rn-v4c-(mn-0)?+d=0
hout — hin + Nis * (hzn - ﬁuﬁ) =0

Tout — T(houtypsutyXout) == O

W —m3, - (hin — hout) =0

with the specifications:
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Min — Miy = 0
xznf:rz;f:O
Tin — T, =0
Pout*PoSutZO
a—a®=0
b—0°=0
c—c*=0
d—d°=0

For the same model but with a sequential resolution approach, it is no more possible to find a resolution
strategy 1 variable / 1 equation. In fact, the calculation of the average mass volume requires the mass
volume of the output which can only be calculated if the outlet temperature, and therefore the isentropic
efficiency, are known. It is thus necessary to introduce an iterative resolution loop.

]lm = /I(I;'P:'X‘;)
s, = (L. P, X))
]I:” = ]l(S:-”.P: 'Xour)

out

% —-_ “(Z;'P:JJ:'X;St:)+1‘(]—:ﬁ'PD:U‘Xou.’)

v
)

out out

T;H’l = T( ]I Paftr )

out out?
Tk _ T}:+1 < EP ‘ST 9
out out | — T,'; ‘
out + gT
< NO YES

W =, * ((h”i —h

A brief comparison of the two resolution approaches is given

h,,=h,—n,*(h, —h:,)

N.=a*t+b*m, *v+c*(m, *v) +d

out )

in Table BI.

Robustness

Calculation modes

unique solving scheme

required

Simultaneous Sequential
Problem statement | incidence matrix DOF analysis required
implicit

specific solving procedure
bounds, if-then-else
numerical noise at flowsheet
level if iterative scheme

Table 3.1: Simultaneous versus sequential resolution approach.
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3.4 Unit models examples

Turbine and compressor

The unit model of the turbine or compressor simulates one stage of expansion (or compression). A multi-
stage turbine is therefore represented by a succession of stages of expansions and splitters to represent
the draw-offs. The model of the expansion (or compression) stage is based on the isentropic expansion
(compression) equation Eq. B3 (Figure B2).

1
Environment at T, / /2
Whet y
/ T, N
System
boundary v 2 di e o
S

Adiabatic turbine

Figure 3.7: Expansion model of a turbine and isentropic expansion.

W = - (hin — hout) (3.3)
hin - hout —n- (hzn - héit(Pina hina Pout)) = 0
with:
Rin molar enthalpy at expansion stage inlet
hout molar enthalpy at expansion stage outlet
P pressure at expansion stage inlet
Pout pressure at expansion stage outlet
n isentropic efficiency of expansion

ffut(Pm, hin, Pout) molar enthalpy from isentropic expansion between hin, Pin and Pout

This equation is written as function of the intensive variables (molar enthalpy and pressure). It can
therefore be evaluated even when the flowrate that passes through the turbine is zero. The efficiency and
the compression ratio, as well as the expression of the volume flowrate limit can be expressed in terms of
other variables through characteristic curves. These curves allow to represent the behavior of a turbine
or compressor when the operating conditions vary. In the case where the unit does not exist (process
design), a constant isentropic efficiency is chosen for each stage of expansion (average expansion ratio:
3) or a correlation based on market analysis is used [I7]. The use of a correlation to set the efficiency
must be treated with caution, it has to be ensured that operating conditions are similar. The choice of
the value depends on the type of turbine. Typical values can be found in [&].

Steam distribution (header)

In integrated energy systems, steam can be produced in different boilers or turbines, and then be dis-
tributed to various users: turbine, processes, district heating network, etc. The steam distribution is
provided through a network of pipes that is maintained at a given pressure level. Each pressure network
is called header whose role is to collect and distribute steam. The header model assumes that the pressure
of all output streams is identical. Pressure losses in the pipes between two production or draw-off points
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are neglected.

An important feature of an header is that the flowrate through portions of the pipes is unknown and
may be reversed depending on the value of the feed and draw-offs flowrates. These are in fact defined by
optimization and according to the demands that have to be satisfied. This is illustrated in Figure B.
When the turbine is running, the two inlets of the header are mixed (point 3) to power the turbine. The
input 2 is a splitter. On the other hand, when the turbine is not running, the input 2 becomes a mixer
and the thermodynamic state of the draw-off 1 can be totally different.

3
O

Y

Case 2: 0 lmol/s

Turbine running Turbine not running

i

o (- —
'
b
-
A

o Cll—

0,5 kmol/s 0,1 kmol/s
- 4—‘
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4

-
)
e
: "
2
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Figure 3.8: Steam header characteristics.

The model developed to simulate the header allows to calculate changes of the flow direction of the
concerned fluid. The change of the flow direction between two headers is also calculated. In this case, the
pressure drop that depends on the flowrate between two headers defines the pressure of the two headers
(Figure B9). The difficulty of modeling such a situation is that, despite the fact that the number of degrees
of freedom remains the same, the number of equations generated at each node (point of connection of a
flow on the header) changes (Figure BI0).

l<—%—>3<—+
2 4

! 1]

—
)
* 7 --—

o0 Orll—
v

Figure 3.9: Direction change between two headers.

If the flow of stream 2 (Figure B0) goes from left to right, the node is a splitter whose simulation
introduces the following 3 equations:
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hl (kJ/kmol)
f1 (kmol/s)

h3 (kJ/kmol) P> 12 (kJ/kmol)
£f3 (kmol/s) -— f£2 (kmol/s)

Figure 3.10: Simulation of splitter or mixer.

1 Mass balance

fi—fa—f3=0
2 Model equations

ha —h1 =0

hs —h1 =0

On the other hand, if the flow of stream 2 goes from right to left, the node is a mixer whose simulation
introduces the following 2 equations:

1 Mass balance

fitfa=fa=0
1 Energy balance
fa-hs—fi-hi—fa-ha=0

If during iteration, the flows are such that the type of the node changes, the calculation can be solved by
a simultaneous approach, since the equation type and the variables involved in the equation change.

fin fi :
! ‘ .lrl 5 * fin 3
hin 1 hin, hin 3

~
- lf 5

( W,

V‘fout1 fout2 Vfout3 fout4
hout 1 hout 5 hout 3 hout 4

Figure 3.11: Modelling of a set of interconnected headers.

-

(1 -
O

O
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A system such as the one reported in Figure BT is difficult to manage by the two resolution approaches.
With the sequential approach, it is necessary to adjust the resolution sequence on the basis of the flowrates
and thus compute the nodes either in the form of a mixer or of a splitter. With a simultaneous approach,
it is necessary to choose a hybrid approach combining the simultaneous and the sequential approach.
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For the system reported in Figure B all the interconnected headers are considered as a set of units
with respect to the flowrates and pressures, and as a single unit to calculate the energy balance. The
following algorithm can be used:

e The energy balances being linear, they are satisfied for each iteration, insofar as negative flowrates
are accepted.

e Determine the type of each node: splitter or mixer, for known flowrate.

e Determine a calculation sequence for the nodes that allows to calculate the enthalpy content of the
output streams of the system.

e Generate the model equations of the header from the calculated molar enthalpies (Eq. B4).

hc,i(fin,ja hin.j) - hout,i =0 Vi = ]-7 cons Nout (34)

with:
he,i the molar enthalpy calculated for output i of the system
calculated on the basis of the flowrates and enthalpies of the inputs
fin,j the flowrate of the inlet stream j
hin,;  the molar enthalpy of inlet stream j
hout,; the molar enthalpy of the output stream i (in the state variables list)

In this case, although the calculation order of the various nodes may change during iteration, the equations
definition remains identical. By this representation, discontinuities in the derivatives of the equations are
not deleted when switching from one type to another. However, in order to reduce the value of these
discontinuities, the derivatives of h.; are calculated by numerical perturbation of f;, ; and hi, ;. It has
to be noted that the equations is again written as a function of the molar enthalpy, and the equations
can therefore be evaluated even when the flowrate is zero.

Heat exchanger

In industrial energy systems, heat exchangers often include phase change transformations: condenser and
evaporator of a heat pump, pre-heating heat exchangers by vapor condensation, condenser at condensing
turbine outlet, etc. The simulation model of the heat exchanger has therefore to take into account phase
changes. In this case, the conventional formula Eq. B3 resulting from the assumption of constant ¢p can
no longer be applied.

QRQ=U-A ATy, (3.5)
with:
Q heat load
U mean heat transfer coefficient
A exchange area of the exchanger

ATy, log mean temperature difference
between hot and cold streams

In the case of a phase change, the heat exchanger can be modeled by considering a succession of zones
(Figure BT3) in which the ¢p of the two fluids can be considered constant and the formula Eq. B3 can
be applied. The sizing equation is highly non-linear and non-continuously differentiable Eq. B3.

— Qix
A; — _ .
; Uit - AT ik (36)
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with:
A
Qi
Ui
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Q50 A Imy
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Figure 3.12: Heat exchanger representation: several zones in series.

surface of heat exchanger i
thermal load of the zone k of heat exchanger i
heat transfer coefficient in the zone k

ATim i log mean temperature difference

Nzi

’

between hot and cold streams in zone k of the heat exchanger i
number of zones defined by linear sections of the H_T diagram
of the hot and cold streams in heat exchanger i

Although it is relatively easy to implement this type of model in a sequential approach in which the
input and output variables are set, this formulation is much more complex in the case of a simultaneous
approach. The application of this formulation in a simultaneous approach requires many developments:

Use of a smooth approzimation technique as applied by [d] to attenuate the discontinuity of the
derivatives.

Calculation of the boundary conditions (the residue and derivatives) in the case of degeneration of
the equation when the c¢p are equal.

Iterative calculation of the residue when the surface is specified; the enthalpy of the output stream
is calculated for the specified surface and the equation Eq. BZa is generated. This approach is
more stable than the one using the residual from the equation, particularly because of the strong
non-linearity of equation Eq. BZ, leading to temperatures crosses in the exchanger during iteration.
By calculating the molar enthalpy of the output stream, the heat exchanger is always calculated
for feasible conditions, which makes the problem easier to solve.

out = hour =0 (3.7)

with:
out molar enthalpy of the output stream

calculated iteratively based on the specified area

howt molar enthalpy of the output stream
in the state variables list

Calculation by linearization of extreme conditions: zero flowrate, temperature cross, etc. This
feature is very important because it is precisely in the extreme operating conditions that the op-
timization will pick the optimum. It is not acceptable that the numerical search of the optimum
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stops when a residual cannot be evaluated. If the situation has no physical significance, one should
give a value to the residual and the path (which depends on the calculation of derivatives) to the
feasible domain.

In the heat exchanger model, pressure drop calculation relationships (depending on the flowrate and tem-
perature) and correlations for the calculation of heat transfer coefficients have also to be added. It has
to be noted that in the case of the simulation of existing units, correlations can generally not reproduce
the measured performance. It is therefore necessary to consider an unknown parameter (representing
the fouling factor and the degree of crossed flows) which will be identified based on the performance test
measurements.

The simulation of condensers and evaporators is done by adding the condition of saturation of the output
stream. This constraint is computed by algorithms of the resolution method that introduces a linking
equation Eq. BR.

hout = hcalc(Pa «, xi) (38)
with:
howt  molar enthalpy at the outlet
P pressure at the outlet
« vapor fraction
T; molar fraction of compound i at the outlet

hcaie  molar enthalpy calculated for fixed P and «

Valve

The valve is an adiabatic expansion. The pressure drop in the valve depends on the flowrate and is given
by the conventional equation for the pressure drop calculation.

Radiative exchange

The radiative exchange is calculated by the following formula Eq. BY. The pressure drop across the heat
exchanger is expressed as a function of the flowrate.

Q=GS 0 (Touy Tog—Tp) (3.9)
with:
Tout,y outlet temperature of the flue gas
Ted adiabatic combustion temperature
G factor of geometry of the oven
S exchange surface
o Stefan-Boltzmann’s constant 5, 6697 - 10~3W/m?/K*
Ty average temperature of the reception area calculated by:
T, = Hinslest 470
Tin inlet temperature of the stream to be heated
Tout outlet temperature of the stream to be heated

Liquid-Vapor separator

The vapor-liquid separator model (Figure BT3) separates the stream into two saturated streams; one
liquid and one vapor stream. The equations of the liquid-vapor separator model are:

Mass balance F-zi=L-z;+V -y,

Energy balance F-Hy =V -H,T,P,y;)+ L -H(T,P,z:)+Q
Liquid composition > z; =1

Vapor composition > y; =1

LV equilibrium Yi = Tq - Ki(T, P, i, yi)
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Figure 3.13: Liquid-Vapor separator.

K; is the ratio of the molar concentrations of the substance ¢ in the vapor and liquid phases that is
calculated to get for each substance the same fugacity in the vapor and liquid phase.

Combustion

In the combustion model, illustrated in Figure B4, a generic fuel formed of carbon (C), hydrogen (H) and
oxygen (O) (subscripts denote the atomic composition of the fuel) is burned with an oxidant containing
oxygen (Os), nitrogen (N2) and water (H20).

Fuel Atomic balance: n 4oms
CHy O, Energy balance : 1
Combustion |——> Pressure balance : 1
—_ n.=n 22
Oxidant atoms
0,, N,, H,0 Variables (3 streams):
n ,=3(n+2)

Figure 3.14: Combustion model.

Assuming complete combustion, the following equations are used to calculate the composition of the flue
gas (N2, CO4z, Hy0O and Os). The energy balance allows to calculate the adiabatic combustion tempera-
ture.

xC +x0, = xCO,

yH+20,->2H,0
YH+50, = H,

0,

T s flz=x=")

fuel 4

— g * 502 i
=i, F X2+

Lo, _ s ox
Mg pges = Mg~ X

N,

. Ny .
Hlﬁ""é“ =m,_

air

y
SHO s ow Y L w (HO
M finées = M et B g, T X

Tin Tair T,

. w fO , A i 150 , . fo . [Teine ,

Til et (] +J‘r= CdT) + i, ™ ( E X0 +J‘r‘~ E X, C,pdT) = E T iesht] +-[r/ E Hnges C,
i : ; :

Complex unit model

A complex unit such as a boiler is calculated by connecting different basic models (Figure BI3).
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Figure 3.15: Scheme of a boiler.

The set of interconnected basic models is given in Figure BI8. It has to be noted that superheating
is often performed in several super-heaters and that these may be calculated by radiative or convective
exchange depending on their location and the fumes temperature.
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Figure 3.16: Simulation model of the boiler by assembly of unit models.

The set of equations of a gas turbine model are illustrated in Figure BT
This model is considered in the global system of a combined cycle consisting of the gas turbine, the fuel
compressor, the recovery boiler, the steam turbine and the condensing unit (Figure BI3).
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Figure 3.17: Gas turbine model.
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Chapter 4

Model resolution: Sequential approach

To solve simulation problems a sequential approach is most commonly applied. The objective of this
chapter is to present the sequential modular method and to introduce a way to address the problem of
handling recycling loops (the Motard method).

4.1 Flowsheet resolution

There are mainly two resolution methods to solve models of integrated energy systems, namely the
modular sequential and the simultaneous approach. The main problem of a sequential approach is how
to deal with recycling. Additional information can be found in literature [23, 2].

4.2 Sequential modular method

The simulation of a system (i.e. set of equipments) is considered. It is assumed that a model (i.e. calcu-
late the state of the output if the input is known) is available for each process unit.

The static simulation of chemical systems systematically induces convergence problems. Consider the
very simple diagram of Figure B representing a small part of a chemical process. To be able to solve
the equations related to a unit, the unit input stream has to be known. However, if there are loops, all
the input streams are not known: to calculate the heat exchanger HE1, stream 1 and 2 must be known.
Stream 2 depends successively on streams 10, 8, 5 and 6, 4. Consequently, stream 4 and 6 are required
for stream 2. However, stream 4 is obtained by the resolution of the heat exchanger HE1. To solve this
problem, a tear has to be made, that is, one must estimate one of the streams and then calculate all the
units of the series and finally use a method of convergence promotion in order to obtain a better estimate
of the quantities on the stream that is cut/teared. For example, if stream 2 is teared, the heat exchanger
HE1 can be calculated, then the reactor, the exchanger HE2, the separator and the splitter. Thus new
values are obtained for stream 2 and convergence has to be reached on stream 2 after iteration. If a more
complex system is considered, it is not obvious to directly determine the stream to be cut, in such a way
that the number of tears and the convergence problem are minimized.

4.2.1 The Motard method

A method for determining the minimum number of tears has been developed by Motard [2]. This method
is illustrated here based on an example. Figure B3 represents a system consisting of 6 units intercon-
nected directly or through recycling or by-pass. Each arrow represents a directed stream from a certain
size (matter, energy,...) that should be determined. For each unit, there is a model that can be solved
to compute the output stream based on the inputs. It is assumed that the system is in steady-state
conditions, meaning that there is no accumulation. If there is a chemical transformation (in a reactor for
example), it is necessary to introduce a virtual stream expressing the amount of product formed and the
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Splitter

Reactor

Figure 4.1: Example of a process with recycling.

amount of reagents consumed. This case will not be considered explicitly.

First, the notion of dual graph is introduced and some systematic rules, which allow to solve the system
by organizing the calculation sequence in an optimal manner, are presented.
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Figure 4.2: Dual graph of a system.

The dual graph

The dual graph is established from the system flowsheet. The big difference between these two types of
graphs lies at the level of the meanings of the branches and nodes. Branches (nodes) of the flowsheet
become the dual graph nodes (branches). Figure B23 shows the relationship between a flowsheet and a
dual graph.
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Figure 4.3: Flowsheet (left) and dual graph (right).

Rules of the Motard algorithm

A general rule is to:
Tear the stream occurring in the largest number of cycles

To find this stream in a systematic way, the dual graph representation of the flowsheet is considered and
the following rules have to be applied:

1. Remove the streams that have no predecessor.
2. Replace the streams that have only one predecessor by their predecessor.

3. Open loops by tears when a stream depends on itself (these are the loops on a single node). The
calculation of stream 1 involves an iterative calculation loop and so a tear.

1] A
[ |

4. Open loop by tearing when a stream predecessor depends on his predecessor (Tear parallel streams
with opposite direction).

1 2

L |

5. Tear streams with the highest number of predecessors. If two loops involve a single node (i.e.
the same stream), this one should be teared. In fact, two loops are thereby cut by a single tear.
C <1 < 1

2
1 3
)

G| I

-

A teared stream has no predecessor. Guess the value and restart in point 1.

Remarks:

e The last rule is rarely applied, because the others are usually sufficient.
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e When a rule is applied, one has always to start from the 1st rule to continue.

These rules allow the decomposition of the flowsheet before the simulation. They allow to determine and
locate the minimum number of tears so that the calculation of the units can be sequential and iterative.

These rules are applied here to identify the tears for the system given in Figure B34. From the graph the
following Table B can be set.

Stream | Stream predecessor

-J

= Ot

0 ~1I O O Wi —
SHOWWWN — !

Table 4.1: Motard algorithm: Streams’ predecessors table.

According to rule 1, stream 1 is deleted because it has no predecessor. Hence, Table B becomes Table
a2:

Stream | Stream predecessor
2 5,7

3 2,4

4 3

5 3

6 3

7 6

8 6

Table 4.2: Motard algorithm: Streams’ predecessors table (rule 1).

Applying rule 2, the streams 4, 5, 6 are replaced by their single predecessor (stream 3). Table B2 becomes
Table £3:

Stream | Stream predecessor
2 3,7

3 2,3

4 3

5 3

6 3

7 3

8 3

Table 4.3: Motard algorithm: Streams’ predecessors table (rule 2).

Applying rule 2 again, the stream 7 is replaced by its predecessor stream 3. As stream 2 has already
stream 3 as predecessor there is no need to write it twice. Table B3 becomes Table E4.

In the same way, stream 2 is replaced by its predecessor stream 3. As stream 3 exists already as a
predecessor of stream 2 there is no need to rewrite it. Hence the final table becomes Table E3.

It is obvious that it is not necessary to recopy the table every time. Generally, the successive corrections
are made to the first table (Table BT) (possibly in color) until obtaining this final Table E33. Tt can be
noticed that all streams have stream 3 as predecessor stream (except stream 1 which did not).
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Stream | Stream predecessor

3

0~ O O W N
LW W wWwwwNnw

Table 4.4: Motard algorithm: Streams’ predecessors table (rule 2).

Stream | Stream predecessor

0~ O Uk W
QoW W W wWwww

Table 4.5: Motard algorithm : Final streams’ predecessors table.

Now let’s look at the application of the Motard rules through the dual graph. The first dual graph is
obtained from the first flow table (Table B). Attention: here the numbers represent the streams.

- - -
o L -

5 = 7 |- 6 > 8

Figure 4.4: Initial dual graph for the system illustrated in Figure B—2.

Applying the rules, the dual graph successively changes according to the Tables B2A-B3 as shown in Figure
3.

The last graph, as well as Table B3, show that all the streams have stream 3 as predecessor, even the
stream 3. Consequently, there is an own loop on the stream 3 and stream 3 has to be teared. All the
other streams disappear by applying rule 1 because if stream 3 is deleted, the others have no predecessor.
Then, the iterative process starts as illustrated in Figure B3.
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Figure 4.5: Evolution of the dual graph: Motard algorithm applied for the system illustrated in Figure
2.

Let’s consider a single stream description variable (for example flow rate) and give stream 3 a first value
a. The streams 4, 5 and 6 can then be calculated. Stream 7 (7=fs(6)) can then be calculated. At this
time, the streams 2 (2=f1(1,5,7)) and 3 (3=f2(2,4)) can also be calculated. Note as a’ this new value
of stream 3. If o’ # a, we start again the calculation with a’ or rather with a new a that is a function of
a' (e.g.: a=ad, d is renamed a) until:
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Figure 4.6: Iterative process for the sequential resolution.
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Remarks :

e A less cost-effective solution would be, for example, to tear streams 4, 5 and 7. A sequential
calculation would have been obtained, but there would have been a more complicate iterative

process.

e Obviously, the presented theory does not mean that one should not make first all possible elimina-
tions when they are easy to achieve.

Let’s now process a more complex case for which the flowsheet and dual graph are given below (Figure
7). The Motard algorithm is applied in Table E8.
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Figure 4.7: Flowsheet and dual graph of a distillation process.

There is a loop to find the stream 4, accompanied by a convergence test, as well as a loop on the stream
12. Tt is a calculation where two loops of convergence are nested, a step forward to 12 can be made when
4 is converged. The calculation scheme is shown in Figure ER.

Stream 1 and 21 are inputs and streams 22, 6 and 7 outputs. It has to be noted that all the intermediate
calculations that are not necessary (streams 6, 19, 20, 22) are not performed each time but only when
convergence is reached. Stream 17 is calculated knowing the input stream 21. A vector a of input data
(T, P, partial molar flow) is chosen for the stream 12, and stream 15 is calculated which gives streams 14
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Stream | Stream predecessor

1 _ _ _ _
2 1,11 15 12 -
3 2 15 12 -
4 3,9, 13 13,15 | 12, 16 16 | Tear 4
5 4,14, 17 4,14 | 4,12 4
6 5 5 5 4
7 10 15 12

8 1,11 15 12 -
9 10 15 12 -
10 8 15 12 -
11 15 15 12 -
12 3,9,13 13,15 | 12, 16 | Tear 12 | -
13 16 16 16 16
14 15 15 12 -
15 12 12 12 -
16 4,14, 17 4,15 | 4,12 4
17 21 - -

18 2 15 12 -
19 5 5 5 4
20 18, 19 18,19 | 18,19 4
21 - - - -
22 20 20 20 4

Table 4.6: Motard algorithm table for complex distillation process.
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Figure 4.8: Calculation scheme for complex distillation process.

and 11. Stream 11 and the input stream 1 provide streams 2 and 8, based on stream 2 stream 3 (and 18)
is found, while streams 10 then 9 (and 7) are found based on stream 8. For stream 4 a vector b is chosen
(17 and 14 being known). Based on stream 4, stream 16 (and 5) are calculated and then stream 13. Then
streams 9, 13 and 3 allow to calculate 4 = V. Test on V' = b, new values for b etc. until convergence of
the loop on stream 4. Stream 12 = o’ (from 13, 3, 9) is calculated; test on a’ — a, new values for a, etc.
until convergence of the loop on stream 12. Finally the streams 6, 18, 19 and 20 are calculated.
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Choice of tears. The application of the Motard rules allows to determine the minimum number of
tears that are necessary to solve the system. However, sometimes to reduce the computation time, it is
interesting to make one or two additional tears or move the location of the tear along a loop. Finally,
several types of tears/cuts are defined, according to the number of unknown variables:

e Total cuts (need to find n partial flowrates, T and P)
e Mass cuts (only the total flowrate is unknown)
e Thermal cuts (only the temperature is unknown)

To solve the system illustrated in Figure B9, a tear has to be added. Each stream can be represented
by a vector containing the state variables, the specifications, the quantities of matter: for example a
vector F containing: T, P, M, x;. Which stream has to be cut? If stream 2 is teared, the temperature,
composition and possibly the pressure are initially not known. Therefore, a total cut has to be made on
the stream to solve the system. However, between stream 1 and the input stream, the total flowrate and
the compositions do not change, and the pressure is defined by the pressure drop. The only parameter
that changes is the temperature. Consequently, it is sufficient to perform a thermal cut. This will facilitate
the calculation as an iteration over one single variable has to be done. This highlights the important
difference between total and partial cuts (compositions or temperature, etc.). Before making a cut, it
should therefore be systematically evaluated whether there is no way to perform a partial cut, which will
be always interesting from a calculation time prospective.

Figure 4.9: Example: mass and thernal cut.
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Chapter 5

Optimization methodology

In this chapter the various forms of an optimization problem (mathematical definition) are highlighted
and the different strategies that can be adopted to solve the optimization problem are presented. The key
questions that are addressed are: What is an optimization method? How can models be used to state an
optimization problem? How is a solving strategy defined for an optimization algorithm? What are the
advantages and drawbacks of the different solving strategies?

5.1 Mathematical definition of the optimization problem

The optimization problem consists in determining the optimal values of the decision variables allowing
to reach a given objective fop;(Xsiate. The objective can be, for example the minimum operating costs.
The optimization problem is defined by the following generic form:

minfobj (XState)
with fovj (Xstate) Objective function
XState - {XFZOUIS7 XParamete'rs, Ydem’,sion} Variables
subject to  F'(Xstate) =0 Model equations
S(Xstate) =0 Specification equations
G(Xstate) > 0 Inequality constraints

The inequality constraints mathematically represent the acceptable limits of the considered variables.
They can be classified into different categories:

e Operating limits: these are defined in the equipment specification sheets. For existing equipment,
operating limits can be contractual values that delimit the responsibility of the equipment manu-
facturer. These limits are part of the exploitation authorization.

e Regulations: environmental constraints or constraints with regard to the exploitation authorization.
For example, the emissions of certain pollutant are regulated and have to satisfy concentration and
quantity limits. In process design, these limits may represent either current conditions or future
conditions to be satisfied by the new facility.

e Technology limits and heuristics: during the design of a new facility or the renovation of an existing
one, the operating limits (pressure, temperature, flowrate, power) of the new equipments are defined
to represent the characteristics of the equipments that are commercially available. These constraints
represent the limits of the materials or of the construction techniques.

e Numerical limits: when the model uses correlations to model the equipment or to compute the
objective function, it is necessary to incorporate the validity limits of these correlations in the
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optimization calculation in order to ensure the pertinence and accuracy of the solutions. The
numerical limits also represent the validity limits of the models, whether unit models or even
constraints regarding the system configuration. For example, the inequality constraints prohibiting
the reversal of the flow direction is introduced if this inversion is not explicitly foreseen in the
developed model. It is also important to consider the validity limits of the thermodynamic methods
used to evaluate the thermodynamic properties of fluids, indeed, if the validity range is not respected
some values may become inconsistent.

The inequality constraints can be divided into two categories:

1. Soft constraints that may be violated during the resolution. These constraints must be satisfied
in the optimization procedure but their satisfaction or not has no impact on the calculation of the
model: e.g. emission limit, maximum flowrate,...

2. Hard constraints that cannot be violated during the calculations otherwise the numerical calculation
crashes. These constraints must be satisfied in any assessment of the model and should be treated
appropriately to prevent failures in the iterative convergence procedure: e.g. flow direction inversion.

The strategies for solving optimization problems can be classified according to the level of integration
between the optimization method and the model resolution. The common strategies discussed in detail
hereafter are:

¢ Black box approach
e Simultaneous approach

e Two levels approach (hybrid approach)

5.1.1 Black-Box approach

In the black box approach the model and the optimization method are considered as two independent
entities (Figure b). The optimization method sends a set of decision variables values to the model and
receives in return the value of the objective function(s) and the inequality constraints. It is therefore
assumed that the model includes a robust resolution procedure that is able to calculate the objective
function for any values of the decision variables.

decision)

)20

Optimization: min f,, (X
subject to G (X

inegality\“*decision

fo bj

Xdecision G

inegality

Status

Model

F(X
S(X

X
X

dependent’

specification” deC|S|on)

dependent’ “*specification’ deC|S|on

Figure 5.1: Black box approach.
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Optimization method

The black box approach allows the use of almost all types of optimization algorithms. It is suitable both
for direct methods (without calculation of derivatives), indirect methods (with calculation of derivatives)
and heuristic methods (genetic algorithms, simulated annealing) or even graphic approaches. The method
becomes heavier when the optimization method requires the calculation of derivatives. For non-heuristic
methods, the optimum search is based on the assumption that the model is unimodal, i.e. there is only
one single value of the objective function for a given set of decision variables.

Advantages

The main advantage of this method is its simplicity and robustness. It is essentially based on the quality
of the model. It also allows to develop a model for which an efficient, reliable and robust resolution
method has been developed.

The model may be discontinuous and contain conditional programming: if such conditions... then... |
which is far more difficult with the simultaneous method.

Each model calculation result corresponds to a feasible operating point and can therefore be used for
evaluation.

The number of variables considered by the resolution algorithm is the number of decision variables, which
may be relatively limited even in the case of calculation of large systems.

Disadvantages

The black box approach is based on the quality of the model and will have difficulties to solve problems
with inequality constraints. In the resolution procedure, checks have to be implemented and the status
of the calculation results has to be verified. This allows the optimization algorithm to receive the infor-
mation if the values returned by the model are consistent and correspond to a significant point.

This method is heavy in computation time, especially when iterative calculations are required to solve
the model.

The success and effectiveness of the method highly depends on the model robustness and its ability to
find a solution for each set of decision variables: when the model respond is that it has no solution, this
does not mean that the internal procedures have not found any solution but that there is actually no
solution. Time should be spent at the level of the model and its initialization when iterative procedures
are used.

The calculation of the inequality constraints is relatively difficult. Only soft constraints can be treated
easily. Hard constraints can only be treated by including them at the level of the decision variables.
Which means that a prior knowledge of the optimum location with regard to these hard constraints is
needed and that the model and its resolution have to be programmed on the basis of the probable acti-
vation of these constraints.

The model is developed for the calculation of the chosen objective function. If the model is to be used
for another purpose, it has to be reprogrammed. This method is therefore not very convenient when the
developed model is to be used throughout the life of the installation where the same model has to be
used to optimize the design, then carry out performance monitoring and finally optimize the operating
conditions according to the market demand. As all the decision variables vary from one case to another,
the model, if it is used in a black box approach, should be modified accordingly.

The black box method is highly dependent on the accuracy of the model resolution algorithms since it is
based on the value of the objective function for a given set of variables.
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It should be noted that the choice of a black box approach has no real impact on the choice of the model
resolution method: the model of a black box approach can be solved by a simultaneous resolution.

5.1.2 Simultaneous approach

In the simultaneous approach, the optimization problem and the model are solved simultaneously (Figure
B532). This implies the use of non-linear and constrained optimization algorithms that use most of the
time indirect methods based on the calculation of derivatives. In the simultaneous approach, the model
is not in charge of the resolution of the model equations. The model calculates the value of the modeling
and specification equations (for given the state variables). While, it is the optimization algorithm that
is responsible for calculating the value of all the state variables in order that satisfy the modeling and
specification equations, for checking the inequality constraints and for minimizing the objective function.

Optimization: min f (X )

subject to F(X 0)=0
S(Xstate):O
G(Xa10)20

state

3
fobj

Xstate F(Xstate)
S(Xstate)

G (Xstate)

Model
Equations evaluation

Figure 5.2: Simultaneous approach.

Optimization methods

In the case of a simultaneous approach, the optimization algorithms are constrained non-linear algorithms
which must be able to deal with large systems. For these methods, feasible and infeasible path methods
are distinguished, depending on whether they first seek to solve the system of equality equations and
then follow an optimization path to reach the optimum or whether they seek to simultaneously satisfy
the equality constraints and optimality conditions (see Optimization courses).

Advantages

The advantage of the simultaneous methods is the flexibility at the level of the problem definition: the
model defines a list of equations to solve and the optimization algorithm is in charge of the resolution.
It is therefore particularly well suited for efficient resolution algorithm. Especially, when the model is
able to calculate the derivatives analytically. This approach is particularly appropriate if using software
developed for process modeling and optimization (gProms, GAMS and AMPL programming languages).
These software use a programming language specifically developed for the development of optimization
model and implicitly incorporate the calculation of derivatives and the use of advanced optimization
techniques.
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The computation time of the simultaneous method is significantly reduced compared to the back box
method. This approach is thus interesting for on-line optimization systems, for which the previous solu-
tion will be used as starting point for the new calculation.

It is possible to easily use continuation methods to assist in the resolution of strongly non-linear problems.

Simultaneous approaches, being based on methods using derivatives, have as an advantage the possibility
to use all the information generated at the solution point, Lagrange multipliers, parameters’ sensitivity,
..., the analysis of the incidence matrix verifying that the problem is well-posed.

Simultaneous approaches allow to easily change the problem formulation, without having to change the
model definition and to choose the list of dependent variables.

Disadvantages

The effectiveness of the simultaneous methods is strongly linked to the initial values of the state variables.
Therefore, a good initialization is required based on direction information from the derivatives values,
prior to the resolution strategy. If the prior initialization is well made, the resolution of the problem is
easy. The initialization is done before the optimization procedure in contrast to the black box approach
where a good initialization is required at each evaluation.

The simultaneous resolution procedure provides feasible points only at the end of the procedure. In the
case of non-convergence, the calculations are made not exploitable, while in the black box approach all
calculated points represent a system state.

Iterative procedures for the evaluation of equations are avoided as much as possible in the simultaneous
approach. Indeed, any iterative calculation causes a precision loss which affects not only the residues
value but also the value of the derivatives.

Simultaneous approaches cannot easily handle conditional simulation problems. Only the cases where
the condition does not determine the optimum position can be easily considered in a simultaneous op-
timization approach. When the optimal solution is conditioned by the decision, it will be necessary to
include integer variables and therefore to consider conditions, such as constraints, as part of the whole
optimization problem.

5.1.3 Two levels approach

The two levels approach has been developed to combine the advantages of the black box and simultaneous
approach. The principle of two levels or hybrid approach is to solve part of the model as a black box and
to charge the optimization algorithm with part of the specification equations (Figure 523).

In the two levels approach, the resolution of a sub-system of the equations at the level of the model
aims to allow a fast and robust resolution that eliminates some of the variables (Xgependent) and part
of the equations of the overall problem. The resolution algorithm is in charge of solving the reduced
problem. This approach is similar to a reduced gradient approach, however, in this case, the reduction
is performed into the resolution strategy, while in the reduced gradient approach, it is the result of a
mathematical manipulation of the linear or quadratic approximation of the optimization problem:.

The two level approach requires non-linear constrained optimization algorithms. Consequently, heuristic
optimization algorithms cannot be used.

This approach combines the advantages of both approaches, however it has also some disadvantages:
mainly at the level of the heavy programming and the derivatives calculation. For an efficient hybrid
approach, derivative chaining (analytical calculation) has to be possible, which allows to calculate the
derivatives unit by unit by perturbation of only the relevant variables.
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Figure 5.3: Two levels approach.

This approach is mainly used in cases where the resolution of the model needs iterative calculations and
the accuracy of the derivatives calculation is strongly dependent on the precision of the internal iterative
calculations. Remember that the calculation of the derivatives by perturbation is often done by a forward
calculation Eq. bI:

6f _ J(X+Az) - f(X)

(5.1)

For this calculation, the calculation precision of f(X) must be significantly better than the value of the
perturbation f(X + Az;) — f(X), so that the derivative measures the sensitivity of the function to the
variation of x; and not the noise associated with the lack of precision in the iterative procedure.

5.2 Model resolution

Whether it’s in the black box approach or in the two levels approach, the techniques that can be used
to solve the model have to be studied. As explained in detail in Chapter B, two methods can be applied:
the sequential modular approach and the equation solver (simultaneous) approach.

Most simulation software are based on modular sequential approaches. The process model is decomposed
into standard building blocks corresponding to the main types of unit operations. Simulation libraries
provide routines to model the behavior of these units based on the mass and energy balances and some
empirical equations. The units are resolved in a sequential manner by following the path of matter and
energy in the process: the outputs of the units are calculated from the inputs and the parameters. Recy-
cling and control loops are solved iteratively starting with values estimated for the teared stream (Section
B7). Mathematical blocks are used to solve the tearing equations (with the possibility of some additional
equations) by matching the values estimated with the results obtained by looping through the sequence
of units. Because derivatives are seldom available, the promotion of convergence is generally based on
substitution or on improvements based on the largest eigenvalue or the Wegstein extrapolation. Methods
similar to the Newton method, trying to iteratively build approximations of the Jacobian matrix (or first
derivatives matrix), such as the Broyden method, have also been used successfully.

In the case of the simultaneous approach called equation solver, all the equations and variables are pro-
cessed simultaneously by a resolution algorithm that solves the overall system.

Many studies compared the two approaches; both have advantages and disadvantages. It should be noted
that the sequential approach was longtime preferred due to the computing power of computers that could
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not solve large size problems with a simultaneous approach. Today this constraint does not exist anymore
which explains the proliferation of the simultaneous methods. The current trend is the development of
hybrid methods to take advantage of the advantages of the two approaches.

A lot of research has been done to determine the most appropriate approach to solve the simulation
problems and optimization of energy systems. Kontopoulos et al. [I3] came to the conclusions that the
choice depends on the type of problem. The results of the comparative study are summarized in Table
b,

Sequential / black box | Simultaneous
3

Problem statement kx
Recycling * Ak
Pressure handling * ok
Initialization HokkK *
Debugging Kook *%
Rigorous models HoAAK *
Conditional simulation | *** *
Flexibility * kK
On-line optimization * ok
Optimization Hk o
Robustness horkx ok
TOtal kk kkk

Table 5.1: Comparison between sequential (black box) and simultaneous resolution approaches: *Not
satisfactory, ** Satisfactory, *** Good, **** Very good.

Remarks:

e For the simultaneous approach, the problem statement does not require the definition of the se-
quence. The algorithm for the degrees of freedom identification helps to define the specifications.

e In many simulation and optimization problems of energy systems, refrigeration cycles or vapor
cycles, the pressures are determined counter-current to other variables: the pressure is set at the
condenser outlet and defines the pressure of previous devices through the pressure loss. This is
difficult to treat in a sequential approach because the inlet pressure has to be estimated in such a
way that the pressure losses will not lead to impossible calculations (ex: negative pressure).

e A good initial value of all variables is necessary for the simultaneous approach, while for the sequen-
tial approach, only the value of the variables of the tears must be well estimated. This disadvantage
of the simultaneous approach is moderated when the model is used in a global method. In this case,
one of the preliminary operations is the validation of the measurements, which provides a value of
all variables in the simulation and optimization. This operation, however, shifts the initialization
problem to the validation tool, which also uses a simultaneous approach. Flowsheeting software
often have an interactive mode that allows to perform a priori initialization of the units by an
approximate sequential calculation.

e Identifying the cause of a non-convergence is more difficult in a simultaneous approach than in a
sequential approach. In a sequential approach, the non-convergence is associated with the resolution
of a particular unit. The analysis of the sequence and of the values allows to understand more easily
the cause of the problem. In the simultaneous approach, all the equations and variables are processed
simultaneously. In this case it is not easy to identify the cause of the non-convergence. However,
it is possible to take advantage of the information of the resolution to identify the convergence
problems. It is important to be able to distinguish the true convergence problems related to the
difficulties encountered by the resolution software from the convergence problems resulting from
the fact that the problem is impossible and that there is no solution having a physical meaning.
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e The use of a rigorous simulation model can be difficult in the simultaneous approach because of the
presence of discontinuities of equations or derivatives. Moreover, the simultaneous approach cannot
easily handle conditional calculations.

e The simultaneous approach is very effective and robust when an initial point is found. In a few
iterations a new point is obtained by changing the value of a specification or of a set-point. The
sequential approach is penalized with a heavier calculation of derivatives which penalizes the calcu-
lation time. However, both approaches are robust to calculate a new operation point from a known
solution.

¢ Simultaneous methods are particularly well suited to address optimization problems especially when
it is necessary to satisfy inequality constraints. With a suitable choice of the state variables,
the inequalities will be expressed in the form of linear equations that are always satisfied during
the resolution. This avoids to calculate units in impossible conditions (e.g. negative flows). In
the sequential approach, the inequality constraints appear in the form of a non-linear inequality
equations that will require a special treatment to avoid convergence problems. The treatment of
the inequalities is highly dependent on the robustness of the resolution software.

e The calculation of recycling involves iterative computations (Motard method to identify tears (sec-
tion EZZ) ). Loops have not to be forgotten because there is no convergence criteria in the case of
an implicit resolution: by calculating several times the model a simple substitution is done. However
no convergence criterion is applied which certifies that the substitution has led to a stabilization of
the solution. In this case, there is a significant risk to consider a system as a converged, while in
reality it is not (some energy and mass balances might not be satisfied!). This cannot happen with
the simultaneous approach since the resolution of the tear equation (loop) is part of the equation
system to be solved.

The availability of the derivatives is another asset of the simultaneous approach for the calculation of the
optimization or for the exploitation of the results. In the simultaneous approach the calculation of the
Jacobian matrix is the essential information to solve the problem because it defines the search direction.
The Jacobian A is the matrix of the derivatives of the equations system for which ij element is defined
by Eq. B2

SEF;(a%)
Aj(ah) = /22 5.2
with:

F(x) modeling and specification equations
A;j(z®)  element ij of the matrix A at the point z*

Sk
éFgff ) value of the partial derivative of function F;

J

with respect to the variable x; at the to the point z*

Two aspects have to be considered:

e In general, the size and the sparsity of this matrix are very important. In the case of a steam
network, the average is 4 non-zero elements per line. So it is mportant to use a sparse matrix to
store the Jacobian.

e The derivatives can be calculated analytically based on the equation formulation. However, when
the form of the equations is not known or is too complex (e.g. in the case of conditional simulation),
the derivatives are calculated numerically by a finite-difference or a central difference approach.

_OR(ab) _ F@t+Axb) - Fi(b) (5.3)

A k
i (") oz Aa:;?

where Fj(xF + Ax’j ) is the value of equation i for which a single variable j among the variables X*
at the iteration k& has been perturbated by the small value —l—Aa:;?
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The numerical calculation of derivatives is costly in computation time since it is necessary to systemati-
cally calculate the equations for each variable of the problem. It is obvious that flowsheeting software try
to perform the analytical calculation when possible, and when the numerical calculation is required, they
try to do it in a smart way and avoid unnecessary calculations. In the case of the modeling of energy
systems, the calculation of the derivatives of thermodynamic functions is often done numerically due to
the discontinuities in the enthalpy-temperature function. Indeed, at the level of the discontinuity, the
derivative has two values, the choice of the correct value depends actually on the direction/path that is
chosen based on the value of the derivative to perform the iteration step.

5.3 The AGE procedure to simulate and optimize energy systems

The AGE procedure (analyze, generate, evaluate) represents a generic three-step methodology that is
applied during a modeling and optimization study.

The first step, analyze, consists in the problem statement: choose and assemble unit models and then
analyze the degrees of freedom of the system to determine the specification equations and set-points (or
command variables).

The second step, generate, corresponds to the resolution of the equation system. This implies initializing
the variables and solving the non-linear equation system.

The third step, evaluate, consistent in drawing a solution from the numeric result in solution. The
consistency of the numerical results provided by the model are checked and the numerical values are
compared with the reality and the good engineering sense. Once the model is approved, it can be used
to support decision making. The evaluate step is also used to determine the cause of the failure in the
case where the solution has not been found. In fact, the cause may be attributed either to the resolution
algorithm that has not found the solution, or to the set of specifications that is inconsistent (unfeasible
system).

5.3.1 Analyze: degrees of freedom identification

In the analysis step, the degree of freedom is defined after having selected the unit model and deter-
mined the interconnections. This consists in defining the set of specification and set-point equations
(S(Xstate) = 0 and C(Xgtate) = 0). The degree of freedom is defined by analyzing the structure of the
incidence matrix (see previous Chapters). The principle of the algorithm is to place an item on each
diagonal position of the matrix by exchanging rows and columns [&, @].

In the case of simulation problems, the algorithm is applied to choose the specifications. If such a per-
mutation exists, then a pivoting sequence exists for the matrix inversion, which allows to say that the
problem is structurally well-defined. When such a permutation cannot be found, it means that several
variables (i.e. columns) collide to occupy the diagonal position of a line. In this case, the problem is
underspecified. The addition of an extra line (i.e. specification), which will assign one of the columns
which conflicted, will allow the algorithm to continue. For a given line (i.e. equation), the list of variables
that are in conflict for the diagonal place defines the list of items among which one variable has to be
specified. Similarly, the application of the algorithm of the matrix inversion allows to identify the over-
specificalions (i.e. excess equations). Surplus equations that are in conflict for one variable and which
belong to the set S(Xgate) define a subset of specifications in which one should be deleted.

Applied to the incidence matrix of the problem, this algorithm allows to define a square matrix (m-+s=n)
in which it is possible to permute the rows and columns in such a way that there is a non-zero on each
diagonal position. With regard to the inversion of the Jacobian matrix this means that there is at least
one sequence of pivots, but this does not guarantee that the value of the pivot is non-zero. If a pivot
becomes zero during the factorization, the problem is numerically singular.
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The algorithm does not guarantee that a solution will be obtained. Because of the non-linearity of the
mathematical model, it is not sufficient to give a value to the specifications to find a solution. The set
of specifications has to be consistent so that the equations can be solved simultaneously and that at the
solution the variables Xgiqte are in the validity range of the model.

In the case of an optimization problem, the degrees of freedom analysis stage will only deal with the
over-specifications search.

5.3.2 Generate: optimization problem resolution

The generate step of the procedure consists in solving the model and/or the optimization problem.
Various algorithms can be used to generate a numeric result as discussed in the previous chapters. For
the simultaneous approach the initialization of the variables is necessary to define a good starting point
for the iterative procedure and the derivatives calculation. In the case of the simulation of an existing
installation, the data reconciliation gives a good starting point for the simulation calculation.

5.3.3 Evaluate: results

Once the simulation or optimization results are generated, the third step of the procedure is: to evaluate.
Therefore, the simulation tool plays a very important role because it can test the solution obtained with
other specifications, to test, for example, the feasibility or the flexibility of the calculated utility and heat
exchange network.

The simultaneous approach is advantageous because it is possible to change the specifications without
changing the calculation sequence. Moreover this approach is particularly well suited to calculate alterna-
tives based on a known solution. The analysis of the solution by the generation of the sensitivity matrix
is another benefit of the simultaneous resolution of the equation system. The objective is to calculate the
variation of the variables to a change of the specification values [L6].

Suppose that the solution of simulation has been obtained by solving the system: F(X) = 0. The
considered system has fixed integer variables. In the vicinity of the solution, the first order development
by the Taylor formula is:

F(X) = Fo + A(X") - (X - X°)

with:
F*(X) the vector of the linearized equations
Fo the vector defined by the equations at the linearization point Fy = F(Xo)
X0 the vector of variables at the linearization point

A(X°)  the Jacobian matrix of the system at point X°

When XY defines the solution of the system, Fy = 0 and the function F*(X) is given by:

F*(X)=AX") (X - X*)
with X* being the vector X such that F(X*) = 0.

As the vector F(X) comprises the modeling, specification and set-point equations, the linearized system
can be divided into three parts:

F*(X) Ap(X*
§°(X) | = [As(x?) | - (x = x*) =0
c(x))  \Ao(x7)
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with:
Ar(X™) Jacobian matrix (rectangular) of the modeling equations at the solution X*
As(X™)  Jacobian matrix of the specification equations
Ac(X™) Jacobian matrix of the set-point equations

In this system, the modeling equations F*(X) have to be equal to zero. With a suitable choice of vari-
ables, Ag(X™) is a rectangular unitary matrix: a single non-zero item equal to 1 per line. Ag(X™) is thus
independent of the values of X and can be noted Ag. The following reasoning is applied to the set-points:
Ac(X™*) will be constant Ac.

The specification s;(X) is written:

si(X)=x; —a5 =0

j:

with:
$i;(X) the specification equation i corresponding to the specification of the variable j
T the variable to which relates the specification j
xf the value of the specification of the variable j

At the solution, the value taken by z; is equal to xjs . A perturbation ds; of the specification is written
as:

si(X)==x; — (JUJS +ds;)=0

For the linearized system this yields:

si(X) = z;—(2]) =ds;
and  S*(X) = A (X -X")=E;-ds;
(5.4)

with F; the vector in which only element i is 1. EI represents line i of the matrix Ag.

The linearized system becomes:

F*(X) Ap(X7) 0
X)) | = As | - (x-X")=ds; |E
C*(X) Ac 0

The resolution of this linear system gives the new value of the variables X to a perturbation ds; of the
specification value of the variable j. The sensitivity of the variables to the specification of the variable j
is obtained by solving the system:

Ap(X)\ gy [0
AS M df = Ei
Ac 5 0
with:
fi% the vector of the variables sensitivities to the specification of the variable j

dX = (X — X™) the response to the perturbation ds;

Ap(X¥)
The solution of this system is obtained by factorization of the matrix ( Fﬁs ) :
C
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-1

Ap(X*) 0
X _ A, E,
de AC 0

The matrix of the variables sensitivities with regard to the specifications is calculated by:

1

Ux Ap(X*)\ ~ oT
7 A R G
Ac 0

with % the matrix of the sensitivities with regard to the specifications whose element i, j defines the
sensitivity of the variable i to the specification j.

The matrix of the variables sensitivities with regard to the set-points is given by:

1

i [AR(XO\ T [0
ac — | A 1o
Ac AT

with % the matrix of the sensitivities with regard to the set-points whose element ¢, j defines the sensi-
tivity of the variable i to the set-point j.

The calculation of these matrices requires no additional factorization. It is an additional information that
directly available through the use of the simultaneous approach.

The use of the sensitivities matrices can be applied to heat exchange networks results [T5]. The sensitivity
calculation is also used to calculate the decoupling between manipulated and controlled variables. When
the set-point is the value of the controlled variable, the system of equations describes the utilities network
as a transformer which calculates the manipulated variables as a function of the set-point variables
(Figure 63). The calculation of the sensitivity matrix gives the influence of the controlled variables on
the manipulated variables.

¢ E Model m;

Figure 5.4: Controlled variables - manipulated variables: Transformer.

When the a set-point value influences more than one manipulated variable, there is a risk of coupling
which has to be taken into account in the control strategy. Without using dynamic programming including
regulators, a static study allows to quantify the coupling. By replacing in the equations system, the set, of
set-point equations on the controlled variables C'(X) by a set of specification equations on the manipulated
variables M (X)), the model becomes an operator calculating the controlled variables (outputs) on the basis
of manipulated variables (inputs) Figure B33.

m; Model €
—

Figure 5.5: Controlled variables - manipulated variables: Operator.

The set of the manipulated variables M(X) is defined by:
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M(X)=Ay(X —X*) =0

where Ay is the matrix of the manipulated variables whose lines have only a single element with the
value of 1 defining the corresponding manipulated variable.

. ARXT) .
M (X) replaces C(X) when the matrix ( As ) can be inverted.

Anm

The calculation of the sensitivities matrix with respect to the manipulated variables provides the sensi-
tivity of the controlled variables with respect to the manipulated variable m; , the other manipulated
variables being kept constant. The system operates in open loop. Element 7,j of the matrix (M) is
defined by:

J

dCi .
Mij = (dm )mk‘#]

with ( do; ) mk # j the sensitivity of the controlled variable ¢; with respect to the manipulated variable

dmj
m, the other manipulated variables being kept constant.

The relative gain array (RGA) (here named matrix L) described by [4] allows to measure interactions in
the process and give recommendations for the pairing of the manipulated and controlled variables. This
operation allows to define the control loops of the control system (Figure 68) and the decoupling that
has to be done between different loops.

—> —
C. m
: | i Model j

Figure 5.6: Control system.

The element ij of the relative gains array is given by:

l“_(g%)mk¢j
() e

dc;

dm_) ck # j is the sensitivity of the controlled variable ¢; with respect to the manipulated vari-
J

where (
able m; the other controlled variables being kept constant: closed-loop.

By linear algebra, the elements of this matrix can be calculated on the basis of the matrix M by multiplying
terms by term the matrix M and the inverse of the transposed matrix (M ~!)T. The characteristic of the
matrix L is that the sum of the elements of the rows and of the columns is equal to 1. The allocation of
a manipulated variable (column) to a controlled variable (line) is achieved by choosing, for each row, the
column that has the largest element in absolute value. If the value is 1, then there is no coupling between
this couple and the others; if the value is close to 1, then the coupling is low; if the value is high, there
is a coupling which should be taken into account to develop a control strategy (decoupling).
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5.4 MINLP problems: optimization of superstructures

In process design problems the resolution algorithm has to make the choice of type yes/no. For example:
choose whether or not a unit is in the superstructure. In this case, it is necessary to add to the model
integer variables that represent the use or not of a unit or a flow. These variables, denoted Y, represent
decisions of yes/no type:

y; =1 the decision i is YES
y; =0 the decision i is NO

The problem becomes a mixed integer non-linear problem called MINLP (Mixed Integer Non Linear
Programming). Before studying the various definitions that the optimization problem can take, the way
the integer variables are considered is first presented, as well as the algorithm that can be used to solve
this problem.

Specification or set-point equations with integer variables

This type of expression is used to mathematically represent the following situation: the turbine j must
produce the power requested by the shaft; otherwise the mechanical power will be provided by an electric
motor connected to the same shaft. Note Wy, ; the power produced by the turbine j, Py ; the power
requested at the turbine j, y; the integer variable associated with the turbine j. If y; = 1 the turbine
is operating and if y; = 0 it does not. In this case, Ppec,; will be produced by the electric motor. The
specification equation of the power becomes:

Wmec,j - Pmec,j Y5 = 0

if Y; = 1, Wmec,j = Pmecq,j
if Y = 07 Wmec,j =0

All the specifications of extensive variables are treated in the same way and take the following form:
Ti— Tsi- Yy =0

with:
T; the extensive variable ¢
xs;  the value of the specification of variable i
Yi the integer variable related variable i

The value of y; can be fixed if the specification is not a yes/no decision.

The set of specification and set-point equations is thus divided into two parts:
S1(X)=0 specifications of the intensive variables
S2(X,Y) =0 specifications of the extensive variables

The intensive variables are not subject to the same constraints: they do not depend directly on the yes/no
decision, only through the balances and the modeling equations. The use of integer variables provides an
additional argument in the choice of intensive rather than extensive variables to describe the state of the
system. If the total enthalpy is used instead of the molar enthalpy to describe the enthalpy content of a
stream and if the integer variable associated with the flow is zero, then the flowrate will be zero as well
as the total enthalpy. The temperature can no longer be calculated and all the modeling equations that
involve this temperature can not be assessed.
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5.4.1 Inequality constraints with integer variables

Consider the example of a heat exchanger of the heat exchanger network. If the heat exchanger is used in
the optimal structure (y; = 1), the exchange area must be between a minimum and maximum; however,
if the exchanger is not used (y; = 0), its surface must be zero:

If the heat exchanger i is chosen: yi =1 and Amin,s < Ai < Amaz,i
If the heat exchanger 7 is not used y; =0 and A; =0
with  Apin,; the minimum surface allowed for the heat exchanger i
Amaz,i the maximum surface allowed for the heat exchanger 4
A; the surface of the heat exchanger 7
Yi the integer variable related to the use of the exchanger ¢

Mathematically, this is expressed by:

Aini ¥ <A < Aoz Ui

In the same way as for the specifications, the inequalities with integer variables relate only to the exten-
sive variables. The set of inequalities G1 is divided into two subsets:

G3(X,Y)>=0 defines the bounds on the extensive variables
G4(X)>=0 defines the bounds on the intensive variables

Linking equations between integer variables

To maintain the consistency of the problem, the unit models will introduce linking equations between the
integer variables, as illustrated for the unit models in Figure b4.
vin 2

yini ¢ vin .
y ¥h

i Yo I .

‘ Yo 1 v Yo 1

Mixer Splitter Header

Figure 5.7: Integer variables definition for mixer, splitter, steam header.

Mixer. The mixer introduces the following equations:

Nin
Z, Yini =Y =20
i=1

Yo — Yin,i > 0 Vi= 1,...,nm

with:
Yin,i integer variable associated with the input stream ¢
Yo integer variable associated with the output stream

Nin number of input streams

If y, = 0, all the y;,; will be canceled by the first equation. On the other hand, if at least one y;, ; = 1,
Yo must be equal to 1 to satisfy the second equation. If all the y;,; are zero, y, = 0 verifies the first
equation.
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Splitter. For the splitter the equations are the following;:

Yin —Yoi =0 Vi=1, .. Ny
Nout
Z. Yo,i — Yin Z 0

=1
with:
Yin integer variable associated with the input stream
Yo,i integer variable associated with the output stream ¢

Nnouwt Number of output streams

If yin, = 0, yo,s = 0 according to the first equation. If one y, ;=1, then y;, = 1 satisfies the first equation.
If all the y, ; are zero then y;, = 0 according to the second equation.

Header. In terms of integer variables, the header is considered as a mixer followed by a splitter. The
generated equations are the combination of the two previous models:

Yn — ya,i 2 0 Vi= 17 cees Nout

Nout
E_ Yoi—Yn =0
=1

Nin
Z. Yini —Yn 20
i=1

Yh — Yinyi 0 Vi=1,..,n,

with:
Yin,i integer variable associated with the input stream ¢
Yn integer variable associated with the header

Yo,i integer variable associated with the output stream ¢
Nin number of input streams of the header
Nouwt number of output streams of the header

All these equations are introduced as a set of additional inequality equations defined by: G5(Y") > 0. This
set of equations may seem superfluous since the integer variables relate to flowrates for which the integer
variable is already defined by an inequality equation frini¥i < fi < fmaz,i¥i. They are nevertheless
introduced to avoid an indefiniteness in the case where the value of fi,n; is 0.
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Chapter 6

Thermo-economy

One of the main applications of the modeling of energy systems is the thermo-economic or thermo-
environomic optimization. The basis of the formulation of a thermo-economic/environomic objective
function will be introduced here.

6.1 Problem statement

The challenge of an integrated energy system is to transform primary energy (fuel resources) into useful
energy in the form of heat or electricity (which will be sold) (Figure 6). In this perspective, companies
invest in a set of technologies that will allow to maximize the profit. In most cases, the generated electricity
will be injected in the network, while the heat will be used directly on-site by a process unit or delivered
to a district heating network. The profit will be defined as the difference between the income from the
sale of transformed energy (i.e. heat and electricity) and the expenses for {uel purchase, operation and
labor, and installation depreciation.

Energy resources
- Different properties
- Costs (market)
- Emissions (regulations)

- Availability
Fuels Heat
Natural gas Solar

Coal, biomass
Waste
Crude oil

Conversion technologies

Other industries

Technologies
- Performance
- Emigsions
- X ompressors
Know-how L0SSes

Heat exchangers

Useful energy

Figure 6.1: Integrated energy system.
The goal of an integrated energy system is to increase the efficiency (thermo), to decrease the costs

(economic), to respect the environmental constraints and to decrease the environmental impact (environ-
mental). As these objectives are in competition and there is a large diversity of technologies available on
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the market, there is no unique solution to this problem and consequently the engineer will be faced with
a thermo-economic/environomic optimization problem.

6.1.1 Definitions

The different terms of the notion 'Thermo-environomic’ illustrated in Figure B2 are explained here.

Thermo-
dynamics

Energy
Exergy

Thermo- .
environomic

Environ-
mental

Emissions
GWP

Economy

Investment
Operating cost

Figure 6.2: Defintion: Thermo-environomic.

Thermo

The system will be modeled by the thermodynamic phenomena taking place in the different process units,
mainly the transformation of matter and energy. The model will calculate the performance of the studied
system on the basis of the technical characteristics of the equipment.

Economic

The model will be used to calculate the performance of the installation which will be expressed by
the economic performance. In the thermo-economic optimization, the trade-off between the operating
costs resulting from the thermodynamic performance of the process and the investments to achieve these
performance (purchase of equipment) will be assessed.

Environomic

In the environomic approach, the model will in addition evaluate the environmental performance of the
system. The environmental performance can be defined by the emissions from the process itself, the use of
raw materials, the waste treatment, or the production of the equipment. The environmental performance
will be expressed in an economic form (for example CO; tax) to include the environmental impact of the
energy system in the economic performance.

6.2 Thermo-economic performance of a process

The goal of a thermo-economic evaluation is to estimate, on the basis of the thermodynamic values
calculated by the process model, the investment and its profitability. The performance is represented
by the trade-off between the generated profits and the total investment costs over the lifetime of the
installation.
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Example: Purchase of a heat exchanger to save energy. The initial situation is illustrated in Figure
B3

HP vapor: 0.02CHF/kWh water: 0.001CHF/kWh
160C 25C
6kW/C . 3kW/C
L00C S0 Reaction 1750 200
160C cond 35C

Figure 6.3: Initial process layout.

To achieve energy savings, a heat exchanger is purchased to exchange heat between the stream at the
reactor inlet and the output stream (Figure E4).

Investment
- Heat exchanger
11 11 17) 0l - Connexions/pipes
: - Control
@ Reaction [——— ontro
100C 150C 175C
or Expected benefit

- Energy savings

- Reduction of .
70C 02 - cooling water consumption (C)

- vapor consumption (H)

Energy recovery

T[C] A 175C Hot utility
0l 150C
a Heat exchanger
1 optimal operation ?
DTmin
Cold
utility
Q [kW]

Figure 6.4: Energy saving by heat exchange.

To evaluate the investment profitability, the following elements have to be assessed:

¢ Heat exchanger purchase cost

Installation price

— Foundation
— Connections (pipes)

— Control

Funding opportunities

Calculate the cost/benefit of the heat exchanger operation
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— Energy purchase (typically lower than the case without heat exchangers)

— Maintenance

To evaluate the benefit of an energy saving project it is necessary to evaluate the compromise between
the investment and the savings. Several difficulties have to be faced:

1. The investment has to be estimated with a relatively simple method. Therefore the purchase costs
of the equipment, the cost associated with the installation of the equipment in the process (including
the costs of foundation, connections, engineering, labor for installation, additional taxes, etc.) and
the cost related to the equipment operation (for example the connection of measuring apparatus,
control, safety procedures, etc...)

2. The calculation of the annual profits that will be achieved. Therefore the energy costs, the main-
tenance costs and the additional labor costs have to be accounted for.

3. Time scale: the investment made at the beginning of the project induces profits for a fixed period.
Therefore, the money of today has to be compared with the future profits.

6.2.1 Estimation of the investment

Different investment estimation levels are distinguished depending on the required precision and the in-
vestment project maturity. The estimation of the investment costs money, the more precise the estimation
the more costly it is, as shown in Figure E3.

40 — rror Range —g, Y
(H timat
Order of
;3 Magnitude . 'y
e Estimate Sost of Estimate
o 30 wer Limit
E Study
D Estimate
L
©
>
O
©
3 20 —
é P:;:—:irwwnr-,*
- Estimate
2
Q
@
o
Lﬁ Definitive
10 — Estimate
I Detailed Estimate I
0 T T I T T | T T T
1 2 5 10 20 50 100 200 500 1000

Cost of Doing Estimate, ($1000)

Figure 6.5: Investment estimation [21].
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1. The first level corresponds to the estimation of the order of magnitude of the investment. It mainly
concerns the processes or the global system. The estimation is often carried out on the basis of the
production level and is obtained by comparison with an equivalent existing installation. The rule
of the 6/10 is often applied.

2. The second level will be the one that is applied for energy audits and process improvement studies.
Based on a PFD (Process Flow Diagram), this type of estimation requires the calculation of the
size of each equipment. This level of assessment will be used to compare alternatives and identify
the most promising ones.

3. The third level will be the preliminary evaluation carried out to select the best alternatives. At this
level, a good investment estimation has to be done to request a budget to fund the project. At this
stage a price offer will be requested for the major equipments.

4. The fourth level corresponds to the final assessment requiring a detailed calculation of the changes:
dimensions of all equipment, calculation of the piping cost, costs of safety measures, taxes, etc. ...

5. Last level: detailed estimation to guide and control the project implementation. The detailed
estimate is often performed by the responsible project engineers or the one who contracted the
project.

For the thermo-economic optimization, a rough estimation of the investment is normally made since in
the majority of cases, the list of technologies that must be used is not yet known.

If only little information is available, the investment (i.e. the purchase cost) C, can be evaluated by
equation Eq.B estimating the investment on the basis of the investment of a similar facility Cp s
considering a scale factor of 0.6. A is the equipment attribute, for example the area for an heat exchanger.

0.6
Co _ ( A ) (6.1)
Cp,ref Ares

With regard to the equipment purchase, the first step will be the definition of the operating conditions,
the choice of the most suitable type, the calculation of the equipment size and the choice of the ap-
propriate material. It should be noted that these choices are not independent from one another. More
information can be found in [22, 21, I, IF].

The cost estimation methods result from statistical analysis of market studies. The methods are based on
the manufacturing cost of standard equipments that are then corrected to take into account the operating
conditions (e.g. temperature and pressure influence). In addition to the equipment purchase cost, the
costs of the equipment installation have to be added to get the installed cost (ready to start). The
installed cost differs from the purchase cost by a factor of 3-4. The installed cost includes:

¢ Additional materials required for installation

Foundations and piping costs

Labor and engineering work

Cost for the integration with other equipments

¢ Equipments and adaptation of control and security systems

Taxes and royalties

Purchase of land
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To evaluate the installed cost on the basis of the purchase cost a global factor F' (known as Lang factor
or bare module factor) can be applied to the total cost of purchase of the equipment (Eq. 632). The
factor depends on the plant type (i.e material that is processed, operating pressure).

Ci=F-% " Cpi (6.2)

with:

Cp,i Purchase cost of equipment ¢

Te Number of equipments

Cs Installed cost

F Lang factor
F=4.74 liquid processing
F=3.1 solid processing
F=3.63 solid-liquid processing

The estimate of the installed cost can be expressed in a canonical way. The effect of the pressure and
material can be expressed by Eq. BZ3. For heat exchangers, for example, the installed cost can be
evaluated by Eq. B3 including the effect of pressure, material choice and reference index. The values of
the various parameters of this equation are taken from [21] (Figure B68).

Byi+ B Fui- Fpi (6.3)
Iy

C; Cpi-(Bii+ Bs,;-Funi- Fpy) - ﬁ
t,re

)

with:
Cpi Heat exchanger purchase cost
Cpi = 10K1‘1‘,+K2,ilogA1:+K3,i(logA7:)2
K; empirical constants from cost database
B; empirical constants computed from cost database
Fp; Pressure factor
Fpi= 1001.i+Cz,ilogl5i+03,i(loglf’i)2
C; empirical constants computed from cost database
P pressure difference from atmospheric pressure
Fri Material factor
1 Cost index for actual year
It ey  Cost index for reference year

The cost indexes are used to calculate the current value of the investment compared to the date on
which the investment estimation or the correlation has been established. The values of the index can
be obtained in journals such as Chemical Engineering [B]. Two indexes that are commonly used are the
Marshall & Swift Index and the CEPCI Index (Chemical Engineering Process Cost Index). Details about
the CEPCI can be found in http://www.che.com/Assets/File/CEPCI_1_01-2002.pdf. The variation
of the indexes along the years and the variation of the CEPCI along the years 2008,/2009 are illustrated
in Figure B

6.2.2 Investment annualization

To make an economic evaluation, the investment has to annualized. The annualization is necessary to
compare the investment made today and the annual income (savings) expected over the lifetime of the
installation.

Considering a period of n years and an interest rate ¢, the future value of the investment I* (at the end
of n years) can be estimated by Eq. B3.

=1 -(1+i" (6.5)
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Correlation Coefficients for Heat Exchangers

er A
K, K, L G [ G B, 8, (m)

pe 3.0238 0.0603 0 6.4945' 66786 17442 074 121 02

ipe  2.1138 0.9658 0 6.4945" 66786 17442 074 121 10

e
32138 0.2688 0.07961 —0.06499° 0.05025 0.01474 180 1.50 4

lead 34338 01445 010790 -0.06499*° 0.05025 0.01474 180 150 10
35238 0.1916 0.09474 -0.06499*° 0.05025 001474 180 150 10
oiler 35638 01906 0.11070 -0.06499° 0.05025 0.01474 180 150 10

fall 3.7438 09270 0 6.4945' -6.6786 17442 074 121 2

» 3.5738 04548 0 0 0 0 180 150 7
3.6418 0.4053 0 ~0.06154 0.0473 0 1.53 127 35
34088 0.6000 009944 -0.4045°  0.1859 0 074 121 1
3.6788 0.4412 0 0 0 0 1.53 127 2
3.8528 04242 0 0 0 0 153 127 15

sctors given are for 100 < P < 300 barg, for 40 < P < 100 use C, = 0.6209, C, = -0.9274, C; = 0.3369, for P <

=0

ictors given are for when shell or both shell and tube are > 10 barg, when tubes only >10 barg use
19, C, = 0.04139, C; = 0

ictors given are for when shell or both shell and tube are > 10 barg, when tubes only >10 barg use
0, C, = 0.09717,C, =0

Figure 6.6: Parameters for estimating the installed cost of an heat exchanger [21].

Assuming that the same operation is performed for an annual income B (constant at the end of each
year), the value of this constant entry at the end of the same period can be calculated. This corresponds
to a sum of incomes, each bearing interest over the number of years minus one. This sum is a geometric
progression defined by the analytical expression Eq. B8 where B* is the annual income B after n years
with an discount rate 4 (interest rate).

n A1
B =Y B (1+iyt =gl L

r=1

6.6
: (6.6)
By combining Eq. B33 & B8, the present value V* of an annual constant income B for n years with an
interest rate ¢ is given by Eq. B4

v () (Bt G )

Based on this formula B, the actual total cost Cip corresponding to the sum of the investment made
today and the operating costs over the lifetime of the equipment can be evaluated by Eq. E38. The annual
expenditure of an investment I can then be compared with the money invested today Eq. B3

Cuo = 1+0+ G0 (68)
IC|CHF/year] =1 - m (6.9)

with
I initial investment
C  operating cost
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Figure 6.7: Variation of the indexes Marshall & Swift and CEPCI over the years [6].

The evolution of the annualization factor with regard to the lifetime n and the interest rate ¢ is given in
the Figure B8. This factor represents the equivalent lifetime if the inflation and the expected profit are
accounted. It is therefore expressed in years.

6.2.3 Total cost and profit

The profit of a project corresponds to the difference between the total operating cost of the installation
and the total cost after the completion of a project producing an income B over a period of n years
with an investment of I. In this case, the initial investment before the project is zero and the profit over
the duration of the project is expressed in discounted francs (CHF). To calculate the annual profit, the
investment has to be annualized (Eq. 6I0).

(1+i)m -1
i (140

(14" —1

Profit:Ctot,o_Ctot = IO""CO' i (1+Z)n

] - [(L, +AI+ (C, — B) - (6.10)
with

I,  initial investment before the project (1,=0)

C, initial operating cost before the project

B income from operating cost of the project

AI investment of the project

Different criteria can be used to assess the profitability of a project. The pay-back time (Eq. 6IT)
does not allow to compare projects with investments of different sizes. The discounted benefits (Eq.B512)
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Annualization factor [-]

Interest rate |-] 1 1

| 1
3
0.04 0.06 0.08 0.1 0.12 0.14

Figure 6.8: Variation of the annualization factor with regard to the interest rate and the lifetime.

and annual benefits (Eq.6T3) must also be compared with the investment. These criteria should be
considered as elements of decision: go - no go. The discount rate (i.e annualization rate) ¢* of the project
(Eq.61d) represents the profitability of the investment, it corresponds to the interest rate that balances
the initial investment. It is therefore a good indicator of profitability. This value is unfortunately difficult
to assess and require a graphic or iterative calculation. This value will be then compared to the average
rate which is used either by the company that makes the investment or with the average rate for other
investments in the same domain. The investment is somehow put into competition.

AT
Pay-back time [years] = 3 (6.11)
EYIEE
Discounted benefit [CHF] = B- (L —AI>0 (6.12)
L (L+d)m
Discounted benefit [CHF/y] — B— |ar- - 1E)" 15 (6.13)
iscounted annual bene y| = T :
. [(144)" —1]
* : B |———| —-Al= .
i*such as e 0 (6.14)

Analysis of the interest rate definition used in the annualization formula

The proposed analysis highly depends on the value that will be adopted for the interest rate i. This value
is arbitrary but based on a few elements related to the economic context of the project. The interest or
discount rate should reflect inflation, to ensure that the future value is well above the value of money in
the future. It must be compared with the interest rate which could be obtained by placing the money in a
bank. Investment is initially not a philanthropic operation, the investor therefore has the choice between
placing the money in a bank or in a company. The interest rate therefore needs to be higher than the
one given by a bank. The value that will be chosen in a company generally results from an analysis of
previous investments. It should be noted that economic evaluation of projects allows to compare projects
that may have fundamentally different objectives but which can be put in competition at the level of the
availability of money in the company.

Typical values are: Lifetime: n = 15 years and Interest rate i = 8-9%.
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6.3 Thermo-economic cost function

Generally a thermo-economic cost function will include terms related to the investment (CAPEX), the
operating costs and the maintenance costs (OPEX). The annual total costs are expressed by Eq. BEI3.
This formula is the result of an integral and reflects the cost in an annualized form. It represents the
dynamics of the system and how it responds second-by-second to changes in the environment. It also
allows to take into account investments which would be spread over the lifetime of the project. If it
can be assumed that the investment is recorded at the time of the commissioning of the installation
and that operation is stationary, the formula Eq. BI3 simplifies and it is possible to define the thermo-
economic formulation in terms of annual cost (CHF /year). For practical reasons, this formulation can
also be adapted to take into account changes by considering the annual operation of the installation as
a succession of stationary states. For example, when evaluating a heating system which depends on the
ambient temperature. For a continuous process the formulation is given by Eq. BI3.

Ciot = /t:m 7i(t) - CO(t) - dt + nz I;(t) (6.15)
0 i=1

with
t =1y integral over one year
Tit annualisation rate
CO(t) operating cost at time t [CHF /s] (Eq. EIB
7 interest rate
n; lifetime of equipment ¢
Ne number of equipments
I; investment of equipment ¢
Nin Nout
CO(t) = Y nini(t)- PP(t)+ Y 1inj(t) - Py(t) + Ein(t) - cein(t)
i=1 =1
— Fout(t) - ceout(t) + M(t) + MP(t) (6.16)
with
Nin number of resources (fuels, feedstocks) purchased
i (t) flowrate of resource ¢ at time ¢ [kg/s]
PP(t) purchase cost of resource 7 at time ¢t [CHF /kg]
Nout number of products (fuels, feedstocks) sold

m; (¢) flowrate of product j at time ¢ [kg/s]
P (t) sales price of product j at time ¢ [CHF /kg]
negative if emission which is taxed or waste to be treated
Ein(t) electricity input at time ¢ [kW]
Ce,in(t)  electricity purchase cost at time ¢ [CHF /kWh)]
Eout(t) electricity output at time ¢ [kW]
Ce,out(t)  electricity selling price for exportation to grid at time ¢t [CHF /kWh]
M(t) annual maintenance cost at time ¢t [CHF/s]
MP(t) man power cost at time ¢ [CHF /s]

Ne 1
Ciot[CHF Jy] = CO - ny, + ; i (6.17)
Ciot|[CHF/y] = OPEX + %CAPEX (6.18)
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with
1
Ti
Nh

co

OPEX

s
e

I;

i(144) 7

a+or—1

annual operating time [h/y] (8000-8760h/y continuous operation)
operating cost [CHF /h]| (Eq. 619

yearly operating cost [CHF /y]|

interest rate

lifetime of equipment

number of equipments

investment of equipment ¢

annualisation rate

CAPFEX total investment cost

with
Nin
m;
v
P’L'
Nout

Py

Ein
Ce,in
Eout

Ce,out

MP

cOo = Z m1 ' Plp + Z mj . Pjs + El’rL *Ceyin — Eout * Ce,out
i=1 j=1
+ M+ MP (6.19)

number of resources (fuels, feedstocks) purchased
flowrate of resource i [kg/h]

purchase cost of resource i [CHF /kg]

number of products (fuels, feedstocks) sold

flowrate of product j [kg/h]

sales price of product j [CHF /kg]

negative if emission which is taxed or waste to be treated
electricity input [kW]

electricity purchase cost [CHF /kWh]

electricity output [kW]

electricity selling price for exportation to grid [CHF /kWh]
annual maintenance cost [CHF /y]

man power cost [CHF/y|
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Pollutant  Tax  Avoidance cost Damage repair cost  Reference
COq 12-60 159-227 51-1310 Switzerland
NO, 8800 - 13800-32270 Sweden

Table 6.1: Example of cost of emissions (in CHF /tonne).

6.4 Environomic cost function

The objective of the environomic cost formulation is to add in the economic objective function terms
that allow to take into account the environmental impact of the facility. It is possible to use different
formulations with regard to the amount of pollutants emitted by the installation. The first approach is to
consider the different pollutants emitted by the facility and associate it with a specific cost. This approach
is based on the principle of a tax that is proportional to the amount emitted. The environmental cost
term CE or ENVEX is given by Eq. taking into account all sources of emissions and discharges
from the installation. The objective function becomes Eq. 621

I3
Nout n; ollutants

CE =) ri- > i T (6.20)
j=1

i=1

with
Nout number of emissions types
mj flowrate of emission j
gouumms number of pollutants in stream j
Tij fraction of pollutant ¢ in stream j
T; tax for pollutant i [CHF /kg]
e
1
Ciot|CHF [y] = CO -np + CE -npy + » —I(1) (6.21)
i=1 "'

The definition of the value T; is of course difficult. One can consider that this factor represents the
price that allows to restore the initial state of the environment in which the facility is located. Different
approaches may be proposed, the simplest is the one that is based on the values of applicable taxes. For
example, in Switzerland a CO2 tax of 15CHF /tco2 was introduced in 2008, the tax was increased to
36CHF /tco2 in 2010 and is foreseen to increase to 60CHF /tco2 in 2014 and to around 100-120CHF /tco2
in 2020 (Confédération Suisse 2012 www.batn.admin.ch). These values have to be compared with an-
other approach that would use the avoidance cost or the estimated cost of repair of the damage created
by the pollutant (Table E).

To be accurate this approach should be extended to include the impact of the production of raw materials,
the production of equipment and the use of products generated by the process. This is done in the life
cycle assessment LCA method that is standardized in ISO 14040 &14044 [T, £2]. LCA consists of four
main steps: the goal and scope definition, the life cycle inventory (LCI), the impact assessment LCIA
and the interpretation. It is important to note that for this evaluation average statistical values will be
combined with values obtained from the model. Therefore, one should ensure that the orders of magnitude
allow to represent the impacts on which it is possible to act by changing the design of the installation
[I0]. In this case, the environomic contribution can be expressed by Eq. 5222 and the objective function
will be Eq. B23.
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Nowt nﬁ.’ollutants Nin nPollutants
. . *
CE = ny- E mj - E i T | + E my - E xi . T
j=1 i=1 r=1 =1

Negq Npollutants

1
+ nﬁﬂ ; Se - < Z xz—'i,—e . Tz> (622)

i=1
ne
1
Cit|CHF/y] = CO-np+CE+ —Ii(t) (6.23)
i=1 "
with
nn annual operating time [h/y]
Nout number of emissions types
m;j flowrate of emission j
my flowrate of resource r

pollutants

ngﬁ)ollutants

Ti,j5
Fag
Na
Se
Ne
7

T;

number of pollutants in outlet stream j

number of pollutants in inlet stream r

fraction of pollutant ¢ in stream j

emission of pollutant ¢ per unit of resource r [kg/kg]
lifetime of installation

size of equipment e

number of equipments

emission of pollutant ¢ for the equipment e per unit of size
tax for pollutant i [CHF/kg]

In order to take into account the geographical location, one has to consider the fact that the pollutant
emitted at a given location can have a different impact when it is issued to another location. In a heavily
polluted environment, an additional issue for example can lead to unacceptable pollution levels and should
in this case lead to a much greater cost. This can be expressed by Eq. BZ3. This inequality constraint
will limit emissions both in terms of quantities and in terms of concentrations. These values are in this
case included within the limits to obtain permits to operate the facility.

Nout

np - E my -z < gt Vi = 1,...,ppollutants (6.24)
Jj=1

wig S aftt Vi= 1, pPotuenteyg =1 pott (6.25)
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Chapter 7

Data reconciliation

This chapter introduces the concept of data reconciliation and validation of an industrial process. The
magjor topics that are addressed are: how to calibrate models (use all the information available while
respecting the fundamental equations of thermodynamics), place measurements, virtual sensors by process
models, correct the values of the measurements (data reconciliation), identify parameters, etc.

7.1 Introduction

The process data are the basis on which rely any control and any assessment of its performance. The data
reliability is very important when they are intended for the process monitoring (control, identification,
...). Therefore,consistent data is needed to accurately represent the process and correctly identify the
parameters prior to the simulation, optimization or the revamping of a large factory.

The data validation or reconciliation is a very important task that turns the available data in a coherent
set defining the state of the process. Today, computers are used to ensure the control of processes. Thus,
there is a large number of data, gathered and stored, which can be systematically validated using an ad
hoc program increasing the data accuracy and ensuring their coherence.

7.1.1 Sources of measurement errors

Process measures are never consistent. The main reasons are:

e There are disturbances due to the instability of the process even if the control system is very
effective. Certain conditions (such as weather) cannot be controlled.

¢ Measurement devices are not always reliable. Instrumental biases may not be compensated ade-
quately; measuring devices may be defective.

e The readings of the measures and manipulations (laboratory testing) can introduce errors.

e The experimental point can be influenced by undesirable elements and the measure does not corre-
spond to the expected variable (bad position of a thermocouple, influence of the flow distribution
in a heat exchanger, effect of a condensate in a vapor stream, dirt on a measuring device).

e Accidents may change the expected balances of a process (losses, bursting of a heat exchanger, heat

loss,...).

7.1.2 Definition of a process state

To set the state of an industrial facility, many measures of variables describing the system such as tem-
perature, pressure, flowrate, composition, etc., have to be made. When the number of measures is less
than a given threshold (called number of specifications), it is not possible to define the state of the system
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(see previous Chapters). Eventually, the state of a subsystem can be defined. As far as these measures
are selected carefully and that their number equals the number of specifications, the mass and energy
balances can be used to calculate the other variables of the system. In such circumstances, a systematic
measurement, error, even if minimal, can bias, sometimes dramatically, the calculations of the other vari-
ables of the system (i.e. introduce great errors). As a result, additional measurements have to be made
to increase the confidence level of the system. It is then no longer possible to satisfy all the equations of
the system, and consequently a technique for analyzing the measurements has to be applied.

The data reconciliation method developed in the BELSIM software, helps to solve this huge problem. To
validate the data, the process, the measurements and the standard deviations estimates (errors) affecting
each measurement are stored in a database.

Illustration

As an example, the mixing of two stream containing a pure substance is considered (Figure IZT). The
temperature and pressure of the inlet streams are different. The number of specifications necessary to
explicitly define the state of the system is DOF=7.

Variables: Temperature (T): 3
Pressure (P) : 3
T1, P1, F1 Flowrate (F) : 3
: T3, P3, F3 9
Equations: Mass bal i1
T2, P2, F2 q Energy balancs : 1 .
DOF: 9-2=7

Figure 7.1: Illustrative example

If less than 7 measurements are made, it is not possible to completely determine the state of the system.

e 1st case: 6 variables are measured: P1, P2, P3, T1, T2, F3. In this case, it is not possible to know
more about the system.

e 2nd case: 6 variables are measured: P1, P2, P3, T1, F2, F3. The flowrate F1 can be calcu-
lated through the mass balance. A subsystem (F1) of non-measured variables is calculable. The
temperatures T2 and T3 cannot be assessed.

e 3rd case: 7 variables are measured: P1, P2, P3, T1, T2, T3, F1. The values are T1=300 K,
T2=410 K, T3=310 K, P1=P2=P3=1 bar, F1=10 kg/s. Based on the mass and energy balance
two non-measured variables: F2 and F3 can be calculated. The system is now completely known,
but a systematic error in the measurement of temperature T3 can bias the knowledge of the system.
Assuming a constant cp, the flowrates of F2 and F3 are at T3=310 K, F2=1 kg/s and F3=11kg/s
and at T3=305 K, F2=0.48 kg/s and F3=10.48 kg/s, respectively. A systematic error of 5 degrees
on the measurement of T3 will give a very bad evaluation of F2.

For analyzing the specification and measurement sets, the DOF has to be defined and the following
questions have to be addressed:

e Are there enough specifications? If no, where do the missing specifications have to be placed? If
yes, what are the extra specifications?

o Are there enough measurements 7 Can the model be solved? Are additional measurements needed?
What to do if more measurements are available?

7.2 Theory

This chapter gives a brief overview of the theoretical bases of the validation, explaining the techniques
and the formalism used (variables, constraints, linking equation, how to analyze the incidence matrices
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and the resolution method. More details about the problem statement and resolution are found in the
previous Chapters.

7.2.1 Definitions
State variables

The state variables are the variables involved in the equations, mainly mass and energy balances, associ-
ated with the physical units of the process. The state variables that are commonly used (also in BELSIM)
are:

e T: the temperature of the mixture, if the material stream is involved in a heat balance. NOTE:
The temperature variable is advantageously replaced by the molar enthalpy H variable for biphasic
flow of a single substance, since the enthalpy uniquely defines the thermodynamic state.

e P: the pressure of the mixture, if it plays a role in heat balance. Very often it is not possible to
validate measurements of pressure and these are considered constants.

e Ci (i=1, number of substances): partial molar flowrate of the substance i in the mixture.
¢ Uj (j=1, number of reactions): extent of the reaction j.

e FRA: split fraction, for example for a splitter, the variable is used when a stream is divided into
several other streams with the same composition (0<FRA<1).

All other variables (enthalpy, mole fraction, etc.) can be deduced from the state variables (as far as
thermodynamic methods describing the mixture are defined). The state of the system is known once the
values of the state variables are known for each stream of the system.

Example: The flowsheet shown in Figure [Z2 is composed of 4 physical units and of 9 streams. The
list of state variables is given in Table IZT; to specify the conversion of C'Hy, the state variable of the
reactor U1 is added.

Mixer Réactor Heat Solitter
F1 exchanae F43
—
Al F3 CH4+202 .
F2 A3 CO2+2H20
A2

Ab

Figure 7.2: Example considered for data reconciliation.

Stream | Variables | Tree Variables

F1 T, P Al Oz, Ny

F2 T, P A2 CHy, No

F3 T, P A3 Os, No,CHy

F4.1 T, P A4 Oy, Ny, CHy, CO5, HyO
F4.2 T, P

F4.3 T, P, FRA

F4.4 T, P, FRA

F5.1 H, P A5 H>,0O

F5.2 H, P

Table 7.1: State variables of the example reported in Figure 2. The partial molar flowrates associated
to a material stream are called tree.
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Measured or observed variables

These variables are those that are measured in the plant. To each measurement corresponds an estimate
of the standard deviation of the measurement error, and each measurement is considered to be a system
variable. Some of these variables are already included in the system state variables; others, called linking
variables, are related to the state variables by specific equations: the conversion equations or the linking
equations. This is for example the case of the total molar flow FMOL, which is connected to the partial
molar flow by the equation: FMOL = )", C}, or, the mole fraction F M}, of the substance k given by:
FM; -y, Ci = Cy.

Constraint equations
The constraints equations are: the mass and energy balance, the linking equations, but also special

equations (liquid-vapor equilibrium equations, equations of equal pressures or temperatures, etc.).

Example: The mixer in Figure 2 has two input streams, whose temperatures are Ty and Tro. The
variables 0241 and O2 49 are the partial molar flowrates of the first input stream (tree A1). The variables
N2, and CH4 42 represent the partial molar flowrate of the second input stream (tree A2). The first
output stream is characterized by temperature Trs and the partial molar flowrate O243, N243 and
CH4 3. The pressures are constant. Three material balances have to be written:

0241 — 0243 =0 for the substance O2
N241 4+ N249— N243 =0 for the substance N2
CH449—CH4,43 =0 for the substance CH4

The energy balance is expressed by the enthalpy equation:
h(Tr1,0241, N2a1) + h(Tr2, N242, CH4a2) — h(Tr3,0243, N243,CH443) =0

The following linking equation has to be written if the mole fraction of the O2 substance is measured in
the output stream.

FM02A3 . (02A3 +N2A3 +CH4A3> - 02A3 =0

Therefore, the state variables of the problem are: Fy, Fo, Tp3, 0241, N241, N242, CH4 42,0243, N2 43, CH4 43
while FMO2,3 is a linking variable.

7.2.2 Problem statement

The data reconciliation is based on the following assumption. All measurements are affected by errors
and corrected or validated values differ from the measured values. On the one hand, the validated values
must satisfy the constraint equations, and, on the other hand, they have to minimize the sum of squares
of the differences between the validated values and the measured values. These differences are weighted
by the corresponding standard deviations. From a mathematical point of view, this is a constrained
minimization problem, which is defined as follows.

Are:
y , the vector of measured values (size MES);
Y, the vector of the corrected or validated values;

X, the vector of the not measured values which have to be calculated (size NMES) ;
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F(X,Y), the vectorial function of the balance equations (size NEQ) ;

P ., weighting matrix which allows to quantify the relative accuracy of the measurements MES. In
practice, it is a diagonal matrix whose elements are the inverse of the variance o; of the measurement i.

The minimization problem is defined by Eq. [
MES
Y — y:)?
Z # with the constraint F(X,Y) =0 (7.1)

ok
=1 4

In matrix notation this becomes Eq. [C2:
Mxy (Y —y)'P(Y —y) with F(X,Y)=0 (7.2)

This constrained minimization problem is solved by the Lagrangian method involving ’Lagrange multi-
pliers’ for each equation, expressed by Eq. I3 (the factor 2 is introduced for the sake of convenience, as
we will see later):

MxyaL with L= (Y —y)TPY —y)+2\F(X,Y) (7.3)

The resolution of the Euler equations gives the solution of the problem. The FEuler equations are written:

oL
5Y. 0 i ,MES
0L .
5x =0 i=LNMES
oL

= =1, NE
o, 0 i=LNEQ

The Jacobian matrices of the measured variables and non-measured variables are:

OF;

Aij = 25 and Bij =
J

The following equations system is obtained:

Y —)"P+ATA=0 MES equations
\'B NMES equations
F(X,Y)=0 NEQ equations

Which is a system of MES+NMES+NEQ non-linear equations with MES+NMES+NEQ unknowns. A
necessary step for all resolution methods is to assess the total Jacobian matrix of this system of equations
written as (if one neglects the dependence of A and B with respect to Y and X):

0 AT | MES lines
0 BT | NMES lines
B 0 | NEQ lines

—
I
oy
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Variables Measurements | Standard deviation
Y1 021 1 0.01

Y2 N2 2 0.01

Y3 N2 49 3 0.01

Y4 CH4 49 4 0.01

Y5 FMO2 43 0.2 0.01

X1 02 43 - -

X2 N243 - -

X3 CH4 43 - -

Table 7.2: Measured values and the corresponding standard deviations for the example reported in Figure
2.

Example: Consider the validation of flowrate measurement around the mixer of Figure [2. The mea-
sured values and the corresponding standard deviations are given in Table 2.

The data reconciliation problem becomes:

(Y1-1)2 | (Y2-2)%2 | (Y3-3)? |, (Y4—-4)? | (Y5-0.2)>
MINxy |“Gorz— + 5oz~ + vo1z~ T ooz~ T o012

with the constraints:

Y1I-X1 = 0

Y2+Y3-X2 = 0

Y4-X3 = 0

Y5-(X1+4X2+X3)—X1 = 0

and

1 0 0 O 0 -1 0 0
01 1 0 0 0 -1 0
A= 0 0 01 O B= 0 0 -1
00 0 0 YX; Y5 Y5 Y5

7.2.3 Existence of a solution

On the basis of the constraint equations it can be noted that:

1. The system accepts an infinite number of solutions if the number of non-measured variables is
greater than the number constraint equations (NMES>NEQ). In this particular case the matrix
B is rectangular and horizontal (more columns than rows) and the Jacobian matrix is singular,
since lines MES+1 to MES+NMES are always linearly dependent. The system is not soluble.

2. If the number of non-measured variables equals the number of constraint equations (NMES=NEQ),
the solution of the problem is obtained by considering the measurements as constants and by cal-
culating the non-measured variables using the constraint equations. The system is just computable
because there are not enough equations to correct the measurements. The matrix B is square.

3. If the number of non-measured variables is smaller than the number of constraint equations (NMES<NEQ),
the system has a unique solution. The constraint equations are not only used to calculate the
non-measured variables, but also to reconcile the measurements. The matrix B is rectangular
vertical (more rows than columns).
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To find a solution, the matrix B should not be rectangular horizontal. In fact, the Jacobian matrix should
not be singular, what happens for example,

e If the constraint equations are linearly dependent.
e If the measurements are poorly distributed and certain parts of the process remain undetermined.
e If variables that are put constant are not well-chosen and create an over specification.

In most of the cases, a careful analysis of the systems incidence matrix allows to detect these problems
prior to the resolution. The incidence matrix is the matrix whose elements ij are 1 if the variable j occurs
in the equation i, otherwise 0.

Example. The incidence matrix of the measured and non-measured variables of the mixer (Figure [2
and Table [[3) is:

100 0 01 0O
01100010
AB = 0001 0001
00001111

Caution: Although this analysis is satisfactory, the equations system, the starting points and the measured
values can be such that the program fails to converge to a solution or the solution is located outside the
eligible area (defined by physical ranges of variables: temperatures and positive flows,...), or that the
system become locally singular during the iteration. This type of problem is explained in more detail in
the chapter dealing with the convergence problems.

7.2.4 Incidence matrix analysis
Validity of the constraint equations

The analysis of a system of equations by the means of its incidence matrix is tricky. Indeed, two identical
equations will appear as two equations involving the same variables and not as an error. Similarly, a
subset of linearly dependent equations cannot be pointed out in an incidence matrix. The chances of
encountering such singularities are mostly eliminated if the equations are automatically generated by the
software. The verification of certain conditions eliminates the generation of errors in the equations. For
example, each stream cannot be connected to more than two physical units; it is necessary to have at
least one input stream and one output stream.

Are there enough measurements?

After generation of the measurements and the linking equations, the variables are divided into three
categories:

e Variables specified as constants (called also constants)
¢ Measured variables
e Not measured variables

To determine if the measures allow, at least, to determine the state of the system, the incidence matrix
‘equations-not measured variables’ corresponding to the matrix B is analyzed. The approach consists in
permuting the rows and columns in such a way to get a subsystem S2 containing a sub-matrix B2’ and a
horizontal sub-matrix B2" (Figure [33). The sub-matrix B2" being horizontal, there are not enough
equations containing the non-measured variables (unknowns) with respect to the matrix B2". Therefore,
the non measured variables of B" cannot be determined (they occur in too few equations).
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unknowns (not measured)

//////
/S
7 ; i i
" ///;;;7/7 31 validable sub-system (rectangle is vertical)
= A7, .
S ;/ B 0 redundant more equations than unknowns
g5 = / VP77
3 ap //;;;;,/ or calculable
[_‘C_’]‘ I, (B1 vertical)
/S
// /,
/, / /s, . . . .
/j/;; Missing measurement (rectangle is horizontal)
Q\\\\\\\:: S9_R'4BY" *add measures to make B2 square or vertical
ol DONE2 O =
@ \§\B\2 N sous-systeme incalculable| rectangle (ncolonnesg,- - nlignesg,-)
AL . 2 = 2
N " horizontale c . .
NN\ (B2 ) othis iinfluences the other permutations =>
. : iterations
variables candidates ‘

Figure 7.3: Incidence matrix of non-measured variables: Non-calculable system

To make the system calculable, an additional measurement has to be chosen from the variables of the
sub-matrix B2". This variable will be added to the measured variables and the corresponding column in
the sub-matrix B2" will be eliminated. When a measure is selected, one repeats again the procedure of
searching for a non-calculable subsystem.

Can the measurements be validated?

Consider now that sufficient additional measurements have been made to ensure that the system can be
solved (positive or zero redundancy). Let’s again analyze the incidence matrix and permute lines and
columns or vice and versa to try to isolate a sub-system of equations S2 containing a sub-matrix B2’ and
a square sub-matrix B2" (Figure [Td). The non-measured variables associated with the matrix B2"
are just computable because there are just enough equations to calculate them.

Non-measured variables

S1
B1 0 validable subsystem
(B1 vertical)

S1

Equations

B2 B2" S2=B2'+B2"
just calculable subsystem
(B2" square matrix)

S2

+—>
variables candidates

Figure 7.4: Incidence matrix of non-measured variables: Calculable system.

In the global incidence matrix corresponding to "equations-variables measured and not measured" the
columns of the measured variables involved in the equations of the subsystem S1 are added at the left
side (Figure [3). The remaining measured variables cannot be validated because their values can be
arbitrarily fixed to their measured values: no equation allows to correct them.

Example: Figure [8 shows a process containing three units. The three substances are separated in
the unit A before entering the reactor B. The unit C separates the reaction products. In this case, we
consider that there is not enough measurements around the units A and C. The energy balance is only
generated for the reactor B while the mass balances are generated for all the units. Figure [72 shows the
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Measured Non-measured
variables variables

2 7 Al 0 Bl 0

o)

=

IS

3

g

0

& A2' A2" B2' B2"
4>

S1
validable subsystem
(B1 vertical matrix)

S2
just calculable subsystem
(B2" square matrix)

invalidable just calculable

variables variables

Figure 7.5: Global Incidence matrix: Calculable system.

corresponding incidence matrix.

F5
3 substances : a,b, ¢ .
F3 Reactor F4
— B C
a+b ->c¢
F1 Fo6
| A —
F2
.
Figure 7.6: Flowsheet.
al X X X
Mass balance A b X X X
c X X X
a X X X
Mass balance B b X X X
c X XX
Energy balance B X X XX X X XX
a X X X
Mass balance Chb X X X
c X X X

Figure 7.7: Incidence matrix.
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Measured variables Non-mesured variables
Molar frac. F3 a X X X X
Molar frac. F4 a X XXX
Molar frac. F4 b X XXX
Molar flow F4 X X X X
a X X X
Energybal.. B b X X X
c X X[ X
Energybal.. B X| X X X X[X X X
a X X X
Energybal.. A b X X X
c X X X
a X X
Energybal.. C b X X
c X X
Molar flow F6 X X X X
Molar frac. F5 a X X X X
Molar frac. F5 b X X X X

Figure 7.8: Incidence matrix.

Figure I8 shows the measurements that can not be validated when the measured variables are:

Are there over-specifications?

Temperature of the streams F4 and F5

Total molar flowrate of the streams F4 and F6

Mole fraction of the substance a in streams F3, F4 and F5
Mole fraction of the substance b in the streams F4 and F5

Molar partial flowrate of substances a, b and c in the stream F1

Consider a system whose resolution seems possible (positive or zero redundancy) and in which constants
have been introduced for certain measurements with a very small standard deviation. During the resolu-
tion, the variables corresponding to these measurements will be ignored and considered as real constants.
However, these constants might not be well chosen and the problem will be overspecified. The analysis
of the incidence matrix "equations-variables" and the permutation of lines and columns allows to isolate
a subsystem of equations S1 whose matrix is vertical (Figure [C9). Variables associated with this matrix
are overspecified because there are too many equations to solve.

Measured and non-measured

variables

& 0
) AB1
5
=
o]
3
o
m

3

AB2' AB2"

Figure 7.9: Incidence matrix:

S1

singular subsystem
(ABI1 vertical matrix)
overspecification

Overspecification.
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In the global incidence matrix corresponding to "equations-variable+constants" the columns of the con-
stants involved in the equations of the S1 subsystem are added to the right (Figure I0). The constants
to make variable must be selected from these columns.

Measured and non-measured |Constants
variables
S1
— .
o @ ABl 0 singular s.ubsysterr}
g (ABL1 vertical matrix)
.'Fg Overspecification
g
=ai
&
ABY' AB2"

<>
constants candidates

Figure 7.10: Global incidence matrix: Overspecification.

Search for trivial redundancy

The incidence matrix corresponding to "equations-variables" is analyzed and by permutation of the lines
and columns a subsystem of equations S1 whose matrix is squared is isolated (Figure IT). The variables
associated with this matrix are just calculable because there are just enough equations to calculate them.
If among these variables there are measured variables, their computed values are independent of the
measured values and these measures are worthless, they generate trivial redundancy.

Measured and non-measured

variables

— 0 S1
g P Bl just calculable subsystem
,8 (B1 square matrix)
&
3
o
sl

5 B2 B2

+—>

just calculable variables

Figure 7.11: Incidence matrix: Trivial redundancy.

Linear dependence in a subsystem

When a part of the flow-sheet generates a just computable subsystem (square sub-matrix), the non-
measured variables, apparently just calculable, may be indeterminable. This is the case of loops in which
no action is given but for which it is necessary to measure a mass flowrate or thermal load to assess what
‘turns’ in the loop. A loop is identified when a series of non-oriented streams forms a loop. It is the
case of recycling but also when a mixture is done on previously separate streams. Mathematically, the
square matrix is numerically singular, which can be detected by analysis of the incidence matrices. This
singularity can be highlighted by transforming the balance equation of one of the units of the loop in a
global balance around all units of the loop.
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x1

x2

Figure 7.12: Example: Flowsheet with loops.

Example For the example illustrated in Figure [CT2:

Measured flowrates Y1, y2, y3
Non-measured flowrates x1, x2, x3

Mass balance equations . .
Jacobian matrices:

unit A y1-x1-x2=0
unit B x1+x3-y2=0
unit, C x2-x3-y3=0

1 0 0 -1 -1 0

A=(0 -1 0 B=11 0 1

0 0 -1 0 1 -1

The indencidence matrix ’equations-non measured variables’ (matrix B) is obviously not singular but it
is numerically singular. Indeed, a singular incidence matrix is obtained by replacing the mass balance
equation of unit C by the overall mass balance equation:yl — y2 — y3 = 0. The corresponding Jacobian
matrices are:

1 0 0 -1 -1 0
A=10 -1 0 B=|1 0 1
1 -1 -1 0 0 0

Another method would be to separate the square matrix in triangular blocks and check, for each of them,
that all variables and equations of a given block are not involved in a ’loop’: this problem has been solved
for a recycling of material. However, it should be noted that detecting such singularities becomes a very
difficult task when one is faced with recycling of heat and matter.

The flow-sheet of Figure LT3 highlights a case of material and heat indeterminacy. The singularity is
located in the square block in the right corner of Figure I4. The analysis of such a system requires
some experience in validation of flowsheets.
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Fe' F6 F5

" F5
—1 R [® 5] R [
a+b->c atb->c
F2 F2'

ECH1
Al F3 F3'
DIV @ MEL
3 SUBSTANCES a b ¢ ECH2
10 Streams 122'33'455'6 6'
3 Trees1.5. 6

Figure 7.13: Example: Flowsheet with loops (heat and matter).

Measured variables Non-measured variables
al X X X
R1 Mass balance b X X X
c X XX
R1 Energy bal.. X X X XX X X X
a X X X
R2 Mass balance b X X X
c X XX
R2 Energy bal. XX X X X X XX
Energy bal. 1 X X
DIV  Energybal. 2 X X
Mass balance X[X
ECH1 Energy bal. X X X X[ X X X X X X X
ECH2 Energy bal. X X X X X X X X X X X
MEL Energy bal. X X X X X[ X]X]| X

Figure 7.14: Incidence matrix of example with heat and matter loops.

7.2.5 Numerical method

The system is solved by a DOGLEG method. This implies that the correction made in the assessment
of the currentsolution is a combination of the correction of Newton and the direction of steepest descent
for the squared sum of the residuals of the equation system. Without going into the details, we can
say that the passage towards the direction of the greatest slope is even more important that the reduc-
tion of the squared sum of the residuals in the direction of Newton is small, when it is not completely zero.

The calculation of the Jacobian matrix required to determine these directions is partly analytical and
partly numerical. To save the calculation time, this matrix is not calculated at each iteration but according
to a chosen frequency. Its calculation also depends on the speed at which the solution is approached. The
matrix is stored using a technique of storage for sparse matrices; only non-zero matrix elements are stored.

It is reminded here that the second derivatives of the constraints over the measured and non-measured
variables is neglected. If the new point proposed by the method is outside the validity domain, the
software brings the point back within the area of validity by relaxing the proposed step. Depending on
the case, all variables are subject to relaxation, or only those who violate the physical constraints.

In almost all cases, the non convergence is to be attributed to the poor quality of the measurements, or
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to a lack of measurements which has not been detected by the analysis of the incidence matrix.

7.3 Sensitivity analysis

Previously, it has been shown that the validation problem (data reconciliation problem) can be expressed
as a constrained minimization problem. The subsequent developments imply that the constraints are
linear or that they have been linearized:

minxy (Y —y) T P(Y —y)
subject to the constraint: AY + BX +C =0

The problem with constraints can also be transformed into a non-constrained problem by using the
Lagrange formulation:

minx yA(Y —y)' P(Y —y) + 20T (AY + BX + O)

Thus, the following system of equations is obtained:

PY + AT\ = Py
BTX = 0
AY +BX = —-C

A square matrix M and vectors V and D can be defined such that:

P 0 AT Y Py
M=[0 0o B'| v=|x]| D=|[ o0
A B 0 A -C

In this way, the solution of the validation problem is written:

V=MD

7.3.1 Sensitivity matrix

The matrix M ! is the sensitivity matrix of the system. The vectors X and Y are linear combinations
of the measured values y. The sensitivity matrix allows to evaluate how the validated value of a variable
depends on all the measured variables and their standard deviations. In particular:

= > (M YyPy; =Y (M YimgmskCh

j=1 k=1

Xy = Z (M)t ;D;

=1
m p
= > (M uyii Py — > (M ngimimsnCh

j=1 k=1
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The variance of a linear combination Z of multiple variables X is calculated as follows:

Z = iaj . Xj
j=1
var(Z) = Za?var(Xj) (7.4)

Jj=1

The estimation of the variance of the validated measured variables is given by:

m

var(Y;) = Z {(Miglpjj }2 var(y;)

and for the estimation of the variance of the non-measured variables:

var(X;) = Z {(Mnj:i’jpjj}z var(y;)
j=1

These expressions can be simplified by knowing that:

1
var(y;) = P
37

and therefore:

var(Y;) = Z W(yz)J

(M1
j=1 !
m M—l 2

var(o) = > e
= var(y;

(7.5)

7.3.2 Conclusions

The purpose of data reconciliation and validation is to improve the knowledge of the state variables of the
system. Providing values is of course a great help, but evaluating their reliability is equally important.
With this in mind that standard deviations for the validated variables and those not measured have been
developed.

Three types of questions can be analyzed by using sensitivity analysis:

e Check how the accuracy of a given state variable is influenced by the set of measurements: What
are the measurements that significantly contribute to the variance of the validated result for a set
of state variables?

e Determine the state variables whose precision is the most influenced by a given measurement:
What are the state variables whose variance is influenced significantly by the precision of a given
measurement?

e Study how the value of a state variable is influenced by the value and the standard deviation of the
set of measurements.
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From this information, decisions can be taken either for the analysis of the measurements of an existing
process, or during the design of a measuring system. Unnecessary analysis may be eliminated or made
less frequently, thus reducing the operating cost. One can also identify the key measurements for which an
accuracy improvement would allow better monitoring of the process. One can also determine the location
of the sensors to get a good estimate of all the key variables of the process at the lowest investment cost.

7.4 Summary

The key points of data reconciliation are summarized here and illustrated in Figure [T3.

e Corrects the measurement values (most probable consistent values)

Considers balances as additional measures

Precision of performance indicators

Quality of sensors

Consistent with heat and mass balances and thermodynamic laws

A posteriori precision of each value (measured and non-measured)

Sensitivity of measurements on performance indicators

1. Measured values

X’IYL

> | Model

2. Identification

F(X 7‘-14711?) =0

Measurements X — X = () —> TTunit

3. Identified parameters

S

/

unit — Tunit

4. Specified parameters

5. Simulation

S

71—,[ it —> | Model

Set points

S
X —> | Specifications

6. Performances

F(X, munit) =0
X-X"=0
0 7. Optimization

Tunit — Tynit =

Figure 7.15: Measurement and parameter identification.

The analogy between measurements and DOF analysis is compared in Table [Z3.

DOF analysis

Measurements system analysis

-specifications
-over-specifications
(spec to be suppressed)
-under-specifications
(add specs)

-measurements
-redundancy

(more information)
-missing measurements
(add measures)

Table 7.3: Analogy between measurements and DOF analysis.

More information about data reconciliation are found in the lecture notes of Prof. Georges Heyen at Uni-
versity of Liége http://www.lassc.ulg.ac.be/webCheng00/meca0468-1/Validation_intro.pdf and

http://www.lassc.ulg.ac.be/webCheng00/mecal0468-1/Validation_review.pdf or in [lg]
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Chapter 8

Model resolution: Mathematical
methods

This chapter recalls the main methods for solving nonlinear equations systems in the context of solving
energy system models or unit models. These methods have been presented in detail in the numerical
analysis course. This chapter is divided into two parts: a) the resolution of an equation with an unknown
(1 dimensional) and b) the resolution of an equation system (n dimensions). The most important methods
such as Newton-Raphson, Wegstein, Rubin and Runge-Kutta are described.

8.1 Resolution of 1 dimensional problems

The resolution of two types of equations is considered: explicit equations (f(x)=0) and the implicit
equations (x=f(x)). For the first type, the Newton-Raphson method and the Chord method are described,
while for the second type, the Wegstein method is described.

8.1.1 Newton-Raphson method

Description

The equation f(x)=0 has to be solved, knowing an approximate value x° of the solution z*. A Taylor
development gives:

(x — )’

Fla) = £ + @ - )0 + L a4
where f’, f”, ... are the first, second,... derivative of the function f.

The Newton’s approximation consists in neglecting the terms of order higher than one assuming that
20 is sufficiently close to the solution x* and replacing the initial equation by the following approximate
linear equation:

F@®) + (z = 2%) f'(2°) = f(z*) = 0

A value close to the root is given by:

1_ 0 _ f(z°)

f'(x0)
This value must be a better estimation of the solution (this is not always the case!). To find the solution,
the recursion formula is used:
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Geometrical interpretation

A

Figure 8.1: Geometrical interpretation: Newton’s method (1 dimension).

Representing the curve y = f(z) in the coordinates system Ozy, the equation of the tangent to the curve
at the point f,, with the x-coordinate " is:

y—f(a") = (x—a")f' (")
The intersection of the tangent with the x-axis (y=0) is (assuming that f'(z™) # 0) :

n f(z")

In the same way 2”72, "3 are obtained by drawing the tangents to the points f,41 , fat2, ... and in
seeking the intersection with the x-axis (Ox). That’s why the Newton’s method is also called the tangent
method.

Remarks

e Note that the successive values of x are found taking into account the signs of {(x) and {’(x). In
this case, to avoid divergence, a second form of recurrence inspired by Wegstein (see below) can be
used: 2" = q- 3" + (1 — q)2" ! (relaxation). This means in the example given before, that, on
the tangent through fy, one stops at a point defined by the value of q. q is known as relaxation
factor, if ¢g=0 full step, if ¢» small steps and more iterations, if ¢« Newton step (direct convergence
if linear problem).

e The disadvantage of the Newton-Raphson method is that it requires the calculation of derivatives
and a good initial point.
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e If the function f(x) presents an extrema, it may happen that the method is divergent (Figure 83).

y A

Figure 8.2: Newton-Raphson method: divergence problem (multiple solution, wrong starting point).

To accelerate the convergence, one can take an ausculatrice of the quadratic curve instead of assimilating
the curve at a point to its tangent, this is the Richmond method.

8.1.2 Chord method or Regula-Falsi method

Figure 8.3: Geometrical interpretation: Chord method.

If there is no analytical expression of f(x), the Chord method which is similar to the one of Newton can
be applied. The tangent is replaced by the chord given by:

the point x**! is obtained by setting f(z**1) = 0, yielding the equation:
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= ah -y ()
with ¢ = —f(xs,z - j;,ﬁ"”f’fl)

This equation differs from that of Newton by the value ¥ that is only an approximation of the inverse of
the derivative of f at the point z*.

e Advantages:

— No calculation of derivatives

— Robustness and speed identical to Newton-Raphson
¢ Disadvantages:

— Slow near the solution

— Initial point requirement as for Newton-Raphson

8.1.3 Wegstein method

This method is very interesting in the common case in chemistry, where one is led to solve implicit equa-
tions (x=f(x)), leading to solve ¢(z) = z — f(x) = 0. Graphically, the solution is given by the intersection
of the bisector y=x with the curve y=f(x). The method is also based on an iterative process. Admit that
one has obtained a value of x after i iterations; the method illustrated in Figure B4) can be used to get
the next value:

) A
) (%) ’ _'

1
1
1
L
i
1
1
1
1
:

A |

Figure 8.4: Geometrical interpretation: Wegstein method.

1. Intersection of the linear slope x = z* with the curve y = f(z) — (2F,y*)
2. Intersection of the linear slope y = y* with the bisector y = x — (21, y¥)
3. Intersection of the linear slope z = x**1 with the curve y = f(z) — (z**1,¢*+1)

By proceeding in this way, the implicit method is used which can diverge. Furthermore, the convergence
is very slow.

Wegstein proposes another procedure to avoid certain inconveniences of the implicit method and to
accelerate the convergence. To this end, he proposes to correct the value of 2+ by drawing the chord
between the points k£ and k + 1 and seeking its intersection with the linear slope y = z. To get this new
value of 2**1, the following system has to be solved (3 angle coefficient of the chord (chord slope)):
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Y —y L i
vyt = et i) = et - ah)
y = X
v &
1| _
Y AN
- T (.
I ‘“\
I 1 \'\-»
] ~~
R
I i I
| |
-
0| k1 gk Sk «

Figure 8.5: Geometrical interpretation: Wegstein method.

This corresponds to search for ¢ so that:

i'k+1 — qi,k + (1 _ q)xk?Jrl

The chord will pass through the point (z**1, 7¥*!) and as y = 2**! this gives:

i‘k+1 _ .Tk+1 — w(i,k—‘rl _ i‘k)
1 )
Fht1 — ¢(xk+1 _ wik)
Therefore:
—1) 1
= — d 1—-g=—
q 1— 9 an q 1— 9

In the case of the implicit method, it may converge in different ways or even diverge, depending on the
value of 9 (the curve tangent) (Figure E).

If ¢ varies from —oo to +o00, we will be able to observe, for the implicit method, the following phenomena
(see sec. BZ):

e [—o0, —1]: oscillatory divergence
e [—1,0]: oscillatory convergence
e [0, 1]: monotonic convergence

e [1,400]: monotonic divergence

The Wegstein method converges on the other hand, even in cases where the implicit method diverges.
However, according to Figure B, we can see that ¢ can take very large absolute values for 0.75<<1.25.
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Figure 8.6: Implicit method variation of .

q=1' """" 075
- | I
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Figure 8.7: Wegstein method variation of .

To restrict the advancement and to not deviate too much from the solution the absolute value of ¢ has
to be limited.

The general procedure of calculation is:

Estimate the solution z°, and then compute the first two points: z! = f(2°) and 22 = f(z?).
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Calculate ¢ to correct x2

2 —x
zl — 20

Successively calculate:

2 = gt +(1—q)2?
a® = (@)
23 g2
L=
et = (@)
;k+17$k
- -
2= pEeY

and so on until the solution is reached. It is clear that in each iteration a test is done to see if the solution
is reached.

8.2 Resolution of n-dimensional problems

The resolution of n-dimensional problems is discussed here. For explicit equations, the Newton-Raphson
method, the method of the generalized secant method, and the Broyden method are considered. For the
implicit equations, the Rubin method is described.

8.2.1 Newton-Raphson method generalization to n-dimensions

The resolution of F(z = 0), where F is a vector function, corresponds, according to the mathematical
conventions, to:

A starting vector 20 =' [29..2%] is chosen and by analogy with the one-dimensional case, the n-

dimensional Taylor development is limited to the terms of the first derivatives, which gives:

file) = Fila®) + 35, ($2) |- Aay=03i=1.n

- L L 0
with Az; = z; T

In matrix form, this system of equations is written:

'gi .. gﬁ .. §f1 7
" v o 61 fi(z?) fi(z)
5_i . 5‘i 6‘,i
ohe . ot . ap| W] LAG@D] (@)
Loz, ox; ox, J
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where the partial derivatives are calculated at the point z°. This is written in the condensed (and
conventional) form:

'J-Az+ F(2°) = F(z)

This leads to:

and for the (n+1)'h term:

the transposed Jacobian matrix being calculated in 2.

Remarks :

e The method requires a matrix inversion, it is therefore necessary that the Jacobian matrix J is
non-singular.

e At each iteration, the matrix J must be recalculated, which corresponds each time to nazn deriva-
tives, n functions and the inverse of a matrix (nzn).

e A convergence process based on Wegstein can be applied: "' = z" —* i;nlﬂ@”)(l —q) At the

beginning, it is advantageous to choose a large ¢ and decrease it thereafter. In fact, far from the
solution, one should advance in small steps, while near the solution, one can progress faster.

8.2.2 Generalized secant method

Newton’s method described previously presents the disadvantage of having to recalculate the Jacobian
at each iteration. However, it is possible to develop an algorithm that renews the Jacobian in a slightly
different way. The generalized secant method is described first and than the Broyden method which is
similar.

The n-dimensional system to be solved is F'(z = 0). This system can contain implicit equations, since
these can always be reduced in an explicit form. The vector z has to found such that e = F(z) = 0.

One can try to solve this system by finding the linear functions that approximate the non-linear functions.
Then one can find the zeros of these linear functions and hope that they are close to the zeros (solution)
of the non-linear system.

Suppose that:

(=)
[=)

B 18 18
N =
I I
-

I
I |

A linear model e* = é - + b can be written to reproduce these data and accordingly:

I
=]
I
[N['S
18 18
(SN
+ +
SIS

9]
3

I
S
3
_|_
IS
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The matrix A has nzn unknowns and the vector b n unknowns. To solve this system, there are (n+1)zn
linear equations, and consequently the solution can be found. First the vector b can be eliminated by
writing;:

Aielzglfgo:é(glfgo):é'Axl

Which leads to the system:
AE =4 AX

And therefore A is given by the following expression if the matrix AX has an inverse. Since AX is
completely under our control (we choose z), an inverse can be guaranteed.

A=AE-AX"!

The values for b can be found with b = e — AA-z". The following value of x can be estimated by the one

that makes e* = 0. This step induces the resolution of a system of linear equations e* = 0 = AA-2" 1 4.
Which gives
£n+1 — —AA_lb — —AA_l(Qn —AA 'Q") =" — AA_lgn

Improvement of the generalized secant method

The approach presented above implies that at each step the matrix A has to be recalculated from the
original data. It is however possible to develop algorithms that modify A in another way. Suppose that
A can be estimated by a matrix called A'. Suppose that Ae! has been evaluated for a given Az'. One
would like to obtain a matrix A:2 such that:

Adl = A% A

To get A%, A! can be changed in the following way:

A=Al o

This results in

At = [AL 4ol *o!] Ag!

v! can be chosen arbitrarily and u! is given by:

1 Ael — Al Ag!
L e —
w tol . Al
As long as v! is not orthogonal to z!, the vector u' is well defined and therefore the matrix A% can be
obtained from the matrix A:1 .

To get a second point AeQ, for the stage Ji, where z2 can for example be the result of: 22 =gl— (A:2)’1é.

With Az? = 22 — 2!, one may then try to have:
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At — A3 Ad® — [A2 + 42 1 0] Ad

u? and v? can easily be found as before, but A:3 has also to satisfy:

Aiele:?’-Aajlz [A:2+ﬁ-t02]Ax1

If u? -t v2 - Az is equal to the zero vector, then the equation above is reduced to the definition equation
of A:2 and would therefore be satisfied. v2 has therefore to be chosen orthogonal to #!. One solution is to

choose the vector v2 equal to the vector 22 orthogonalized with respect to z!. In this case, the equation
to get v? is:

’U2 :A.I‘2— [tAixlAilz]Aixl
- = tLI_Aml

One then gets another point Ae? for the stage Az® and can impose that:

Ae® = A* . A?

with
Act= 4t
A = A As?

For A* = A3 + u® - v®, v® should be orthogonal to Az' and Az? .This result can be generalized by:

A+l — 4l A—ei*é'—&’”” i
_:+ tUl-Axi v

where v° is orthogonalized with regard to (i-1) predecessors Az

8.2.3 Broyden method

There is a great similarity between the Broyden method and the generalized secant method. Only one
step of the algorithm distinguishes them. However the Broyden method performs better in terms of time
usage and computation memory. Instead of selecting a new matrix in a way that the previous steps are
satisfied, the Broyden algorithm requires that (the vectors z being orthogonal to Ax?):

Aty = Az

The advantage is that the different Az’ have no longer to be stored since all the information will be
retained in the matrix A. As previously:

Act = A Art = [AT+u"v] As?
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And for each vector z # 0 orthogonal to Az*

[§+ujtvj}&=£-&

Ifvl =Azf, -2 =t Az’ -2 =0, if and only if 2 # 0 orthogonal to Ax’. With this choice, one gets:

The advantage of the Broyden method compared to the generalized secant method is, as said earlier,
that it is not necessary to preserve the vectors Az’ . However the disadvantage is that the convergence
is linear, while the secant method converges quadratically.

Rubin method (quasi Newton)

In various mathematical models discussed previously, it was shown that some of them took the form:
xF*+1 = (z¥). Where 1 is an operator and not necessarily an analytic vector function (here the case

where it is a vector ¢ is considered).

Example. As this situation occurs frequently in the calculations of a flowsheet, let’s consider a simplified

example (Figure BR):
\\ 7
>

xk+1 \ \ xk DIV
4
2 3 S
REACTOR E
P
1
5

Figure 8.8: Process flowsheet.

The process involves a reactor R, a separator S, a splitter D and a mixer J. The input stream 1 is known,
as well as the equipment models. The output streams 5 and 7 have to be calculated, which requires also
to calculate all flows internal to the loop (2,3,4 and 6). It is therefore necessary to iterate over the values
of the parameters of the stream 6 contained in the vector z. During the iteration, the problem of how to
improve the convergence is faced (like in the Wegstein method getting faster or arrive to the solution).

The method is the one of the generalized chord, but applied to the particular shape of the vector function
to solve: x — g(g) = 0 where z and ¢ are a vector and a vector function, respectively. One can expect
to estimate a Jacobian of this function.

104



CHAPTER 8. MODEL RESOLUTION: MATHEMATICAL METHODS

If ¢(z) is analytical:

fl@)=z—¢(x)=0

By applying the Newton’s method, this gives:

e A O
2 =g (B L ()]} 2 - vt

Therefore, looking for an approximation of the Jacobian of ¢ becomes the objectif. The Taylor develop-

ment of these recurrence functions (limited to the first term) becomes:

di(z) = M@M+C%)5@rm®+m+<wﬁk¢m—ﬁ)

0x 0Ty,
¢@)1Mﬁﬂ<wﬁ6@x@+ +G%Y%xﬁ)
IS I 0z ! 1 S, " "
Un(x) = Pola®) + @ﬁkw —af) + +f@@k« —ap)
n(Z) = n (X 571 A 57, Ty — T

where k is the number of iterations, j indicates the element and n the dimension of the problem (number
of variables). This is written in vector form:

V(@) = v(a*) + ' [p(h)] } At

With respect to the resolution perspective, the vectors z', 22, z3, ..., ¥ can be known after k iterations,
as well as ¢(z**1) —¢(2*). Indeed, the implicit method gives (assume that it has started at a point 2°):
xé‘ = 1, (zF=1) (element j, iteration k). However, for a system of n equations, there are n? unknowns
which are the derivatives of ¥ with regard to x (for each x and 7). After an iteration, there are n
equations, and after n iterations, there are n? equations and the expression of the Jacobian can therefore
be obtained. To obtain this, two matrices C and D are used to store the information given by each
iteration. In matrix form, the system to be solved is:

v(z) —o(*) = {*L [Y(2")]} Az"

And in the condensed form !B =! J'A or 'tB'A™" =t Jand J=A"'B

with
1_ 1_ .0 1_ .0
x] — a5 T; — z, —T
— |k _ 0 k_ .0 k _ .0
A= |27 — >y T —x; Ty — T,
n 0 n .0 n 0
xp — T — X xr —x,
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The Jacobian J is obtained by inverting A and multiplying by B. From a numerical point of view,
to obtain the transposed Jacobian matrix, n iterations are performed by simple substitution, and the
information is stored in 2 matrices C and D :

0

Ty T Xy,

at Xk xk

1 7 n

C = k .k k
= X7 T Z,
n n n
L1 Ly L

() - Pia®) - Pu(af)
7) %(El) 1/}“@1)

IS
I

Gi(@h) o dyat) o galah)

(@) e i) e (@)

These two matrices have each (n+1) rows and n columns. A and B are obtained by subtracting in each
matrix the first line to all the others. However, the Jacobian calculated in this way is the one at the
point z°. It is preferable to calculate it after n iterations. For this reason, the first obtained information
will be stored by starting with the last line (it is as if the matrices C and D were returned with regard
to the horizontal). o B

At the point z" one has J(¢) = A~'B. The (n+1)*" iteration gives z"*! by 2"+ = 1)(2™). This value
is then corrected in the following way:

in+1 _ Q” _ {£ _t (é—lé)}fl [En —%(&”)]

The Rubin method is therefore a Newton-Raphson method which has been modified to allow the estima-
tion of the Jacobian, because in the case of the flowsheet, the function ¢ (z) is not known analytically. This
method is also called the generalized chord method. In fact, the calculation of the Jacobian based on the
¥y ()= (™)

k

_ = Dj-
P75 !

matrices A and B corresponds to estimating the slope of the chord between two points

In order to further accelerate the convergence, the Wegstein method can be applied on the most sensitive
variable (that which has been the most modified).

8.3 Solving differential equations: the Runge-Kutta method

The purpose of the Runge-Kutta method is to obtain an approximate numerical solution from a non-linear
ordinary differential equation or a system of nonlinear ordinary differential equations.
Consider first the case of one equation, given by:

dy

— =y = flz,y(z

Yy = Iy y(a)

with the initial conditions:y(z°) = 3° where 20 is the initial point.

The slope of the function y, allows to estimate the value of y at a point #° + h where h is the integration
interval.

If y" = y(2® + nh) is the estimation of the function y the Taylor development (centered at 2" ) gives
after n steps of integration:
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YA

n+1
n /
0 -
n n+1
X X X
y(@" ™) = y@" +h)
h? h3
= y@") +hey' (@) + Sy (") + gy (E) £ (8.1)
Knowing ¢y = f(x,y), one tries to obtain an approximation of y”,y"’,.... All these derivatives taken at
the same point, one has:
dy' _df _of oy . f
no_ 4 _ 4 a5 o _
vz der dr oy (5x =fy St
dy//
" _ _ . ~J e
Y = e dx(fy [+ fa)= (fy f+fac) + (fy [+ fz)
= fww+2ffwy+f2fyy+fy(fyf"'fac)

where f, = 2, foy = % and noting that in this case % = % .
Introducing the values of 4" in Eq. EJ and one gets Eq. E2:

AynJrl = yn+1 =h- er (fm +fy f) (8'2)

Then one searches an expression of y"*! involving only estimates of the function f at a specific point:

n+1 _

y Yy + Nog-ko+ Ny-ky+ No-ko+....
ko = h-f(@",y")
ki = h-f@"4+a1-hy"+ Bio- ko)
ke = h-f(a"+ag-h,y" + Bao-ko+ Bo1 - k1)
ks = h-f(x" +asz-h,y" + B30 ko + P31 - k1 + Bs2 - ka2)

If one develops k1 by dropping the second order term, one gets:

ki = h'(f-i-Oél'h'fgg‘FﬁlO'kO'fy)

Consequently:
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Ay"™ = No-h-f+Ni-h-(f+a1-h-fo+PBro ko fy) (8.3)
The comparison of the h terms of Eq. B2 and Eq. B3 gives:

hf — Nog+N;=1
h2'fz — Nl-a1:1/2
W2 fy-f — Ni-Bra=1/2

There are three relations for four parameters; consequently there is an infinite number of solutions that
can be written in the form:

1
Ny = 1-
0 2'&1
1
N =
2'0[1
Bz = m

Taking oy = 1, on has that Ny = 1/2, Ny =1/2 and S19 =1 and

ko= hefay)
b= S
ytt o=yt - (k()+k1)

In the third order, there are 8 parameters for 6 equations, in the fourth order, 13 parameters for 10
equations, etc. The method that is used here is the one that has been developed by Runge which is a
method of the 4th order. With Table BT one gets:

No N1 N N3 «g az a3 P P20 Por Pz Ps
RUNGE 1/6 2/6 2/6 1/6 1/2 1/2 1 1/2 0 12 0 0 1
KUTTA 1/8 3/8 3/8 1/8 1/3 2/3 1 1/3 1/3 1 1 -1 1

Table 8.1: Runge and Kutta values

k‘() = h- f(n )
ki = hefa™+h/2,y" + ko/2)
ky = hef(@"+h/2,y" + k1 /2)
ks = h-f(@" +hy" + ko)
1
Ayn_H _ 6 (k0+2.k1+2.k2+k3)

If there are several differential equations, the development will be the same but it will apply to the vector
functions. In this case however, there will be interest to weight the equations so that the variations of each
are of the same order of magnitude. The system to be solved is then (with «, 8,7 weighting coefficients):

a- filz) = %
§ hi = A
V- fa(@) = %
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8.4 Numerical applications

Through some numerical examples the use of some of the models that have been described are illustrated.

8.4.1 Comparison between simple substitution and Wegstein method

First case: monotonic convergence

Ix=l+bx+c§ a 14

I__ | h 0,0417] T

[Substitution c 0,1583]

ter [x f(x)
1

0 ;
q

14 ;
2] 14| 17667
17667 1,7667
1,7657] 1,959
1969] 1,069
1,968] 2,0959
7,0953] 2,0959
2,0959] 2,1828
2,1828] 2,1628
2,1828] 2,2454
2,2454] 22454
2,2454] 2,2918 + + + + + + |
2,2318] 2,918
8] 2,2918] 2,321
2.3271] 23271
9] 2,3271] 23544 -
23544 2,3544
0] 2,3544| 23758 J

w)|

I’

|

=

-

Wegsten i -
fer  [x 0 s X amiar 7
1 o 14 1 7

14 14 b
2| 14[ 1,7687| 0,2633] -0,357| 1,9005 1 -7
1,9005] 1,9005 -
3| 1,9005] 2,051 0,5642] -1,295] 2,246 P
2,246| 2,246 1 //
4| 2246] 2.2923| 06982 -2,313| 2,3994 L
2,3994] 2,3934 1T L
5 2,3994] 2,4115| 0,7772| -3,488] 24538 -

2,453 2,4538
72,4538 24556 0.5101] -4,256] 24632
2,4632| 24632

o

Figure 8.9: Monotonic convergence.
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Second case: oscillatory convergence (only for simple substitution)

x=atbx+ex® [a 3
b -1.3]
ubstitution c 0.7
ter X f(x) 4 E
| — ﬁ+‘ 3 N
7 .
7 30 1 = =
a0, - .
g 1.98; | @ i

[x am tior” 1

0.4118] 1,7647)

TAT 1 TS
15019 | | )

Figure 8.10: Oscillatory convergence.

Third case: monotonic divergence (only for simple substitution)

x=a+bx+ox®

a 0.3
b 1.
ubstitution c [

fter

[x am Tior”]

a7 1372 T2
1.3723[ 1,3723)
137 3

TR T — 11

Figure 8.11: Monotonic divergence.
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x=a+bx+ex’

=
= EN

ubstitution
ter
1

Z

q [x am lior” - .7

0.5638] 1.90348 .

U513 TOT5T | o

E 4|
4] 1.9125] 1,913 -1.282] 0.5617[1.91271 -
Z .

; T .
5| 10727 1.0127| -1.259| 05619 1.01271 -
1.9127] 1,9127] =
G| T.9727 1.9727] 1,253 0. TaTZ7T

19727 1,017 [

Figure 8.12: Oscillatory divergence.

Fourth case: oscillatory divergence (only for simple substitution)

8.4.2 Comparison between simple substitution and Rubin method

x1=1.4 racine(1+x2)-0.4 x1 26| 1,762 2445 1,893 2,269
x2=1.5 racine(x1) -0.5 x2 +1.5 27| 1,893 2,269 1,774 2,430

[ 28| 1,774 2430 1,883 2,283
Substitution simple 29| 1,883 2283| 1,783 2417
It x1 %2 1 f2 30| 1,783 2417 1,874 2,295
1] 3,000] 2000] 1,225] 3,098 31| 1,874 2295 1,791 2406
2| 1,225| 3098| 2344| 1611 32| 1791 2406 1,867 2,305
3| 2344] 1611 1325 2991 33| 1,867 2305 1,798 2,397
4 1325] 2991 | 2267 1,731 34| 1798 2397 1861 2313
S| 2267| 1,731 1407 2,893 35| 1,861 2313 1,804 2,390
6| 1,407| 2893 2200| 1,833 36| 1,804 2390 1,856( 2,319
7| 2200| 1833 1476| 2,808 37| 1,856 2319 1,808 2,384
8| 1476| 2808 2142 1918 38| 1,808 2384 1,852 2,325
9| 2142| 1918| 1535 2,736 39| 1852 2325 1812 2,379
10| 1,535| 2,736| 2,092 1,990 40| 1812 2379 1,849 2,330
11| 2,092| 1990| 1584 2674 41| 1849 2330 1,815 2,375
12| 1584| 2674| 2050 2,051 42| 1815 2375 1,846 2,334
13| 2,050| 2051 | 1625 2622 43| 1846| 2334 1,818 2,371
14| 1625| 2622 2014 2101 44| 1818 2371 1,843 2,337
15| 2,014 2101 | 1660 2578 45| 1,843 2337 1,820( 2,368
16| 1660 2578| 1,984 2143 46| 1,820 2368 1,841 2,340
17| 1,984 2143| 1688 2541 47| 1841 | 2340 1,822 2,366
18| 1688| 2541 | 1959 2178 48| 1,822 2366 1,840( 2,342
19| 1,959| 2178| 1,712 2510 49| 1,840| 2342 1,823 2,364
20| 1,712 2510| 1,938 2,208 50| 1,823 2364 1,838 2,344
21| 1938| 2208| 1,732| 2485 51| 1,838 2344 1,825 2,362
22| 1,732 2485| 1921 2,232 52| 1,825| 2362 1,837 2,345
23] 1921 | 2232| 1,749 2463 53| 1,837 2345 1,826 2,360
24| 1,749 2463| 1906| 2,252 54| 1,826) 2360 1,836 2,347
25| 1906| 2252| 1,762 2445 55| 1,836) 2347 1,827 2,359
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Rubin \ \
x1=1.4 racine(1+x2)-0.4 x1
x2=1.5 racine(x1) -0.5 x2 +1.5
Iter  |x1 X2 f1 f2
1 4,0000 5,0000 1,8293| 2,0000
2 1,8293 2,0000 1,6932| 2,5288
3 1,6932 2,5288 1,9526| 2,1874
Iter  |x1 X2 f1 f2 x1-f1 x2-f2
4 1,8071 2,3325 1,8329] 2,3501] -0,0258| -0,0176
Cc 1,8071 2,3325 D 1,8329| 2,3501
1,8293 2,0000 1,6932] 2,5288
1,6932 2,5288 1,9526| 2,1874
A 0,0222 -0,3325 B -0,1397| 0,1786
-0,1139 0,1962 0,1197| -0,1627
A-1 -5,8552 -9,9218 (A-1).B=|J -0,3697|  0,5684
-3,3986 -0,6631 0,3956| -0,4992
E-J 1,3697 -0,5684 (E-J)-1 0,8199| 0,3108
-0,3956 1,4992 0,2163]  0,7490
Iter  |x1 X2 f1 f2 x1-f1 x2-f2
5 1,8337 2,3513 1,8294| 2,3556| 0,0043| -0,0043
ligne  modifier 2
odif C 1,8071 2,3325 modif D 1,8329| 2,3501
1,8337 2,3513 1,8294| 2,3556
1,6932 2,5288 1,9526| 2,1874
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8.4.3 n-dimensional Newton-Raphson method

f1=x172-x2-1
f2=x1-(x2-1)"2
Newton-Raphson
Iter  |x1 x2 f1 f2 J J-1
1| 5,000/ 5,000/ 19,000/ -11,000 10 -1 0,1013| -0,0127
1 -8 0,0127| -0,1266
2| 2,937 3,367 4,257 -2,666 5,87342 -1 0,1766| -0,0373
1| -4,7342 0,0373| -0,2191
3| 2,085 2,624| 0,725 -0,552 4,17076 -1 0,2589| -0,0797
1] -3,2481 0,0797| -0,3324
4| 1,854] 2,383] 0,054, -0,058 3,7075 -1 0,2989| -0,1081
1| -2,7655 0,1081| -0,4007
5 1,831] 2,354] 0,000] -0,001 3,66285 -1 0,3036| -0,1122
1| -2,7072 0,1122| -0,4108
6/ 1,831 2,353) 0,000/ 0,000 3,66235 -1 0,3037| -0,1122
1| -2,7064 0,1122| -0,4110
7| 1,831 2,353] 0,000 0,000 3,66235 -1 0,3037| -0,1122
1| -2,7064 0,1122| -0,4110
8| 1,831] 2,353) 0,000/ 0,000 3,66235 -1 0,3037| -0,1122
1| -2,7064 0,1122| -0,4110
9| 1,831] 2,353 0,000/ 0,000 3,66235 -1 0,3037| -0,1122
1| -2,7064 0,1122| -0,4110
10| 1,831] 2,353| 0,000{ 0,000 3,66235 -1 0,3037| -0,1122
1| -2,7064 0,1122| -0,4110
11] 1,831] 2,353| 0,000{ 0,000 3,66235 -1 0,3037| -0,1122
1] -2,7064 0,1122| -0,4110

Figure 8.13: F1 according to x1 and x2.
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Figure 8.14: F2 according to x1 and x2.
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