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Speci�c objectives

The speci�c objectives that have to be acquired at the end of the lecture are summarized in the following
table which can be used for evaluating your progress.

Progress Topic

Energy conversion system model

OOOOOO De�nition of the system boundaries
OOOOOO What is a state variable, what are the degrees of freedom of a thermodynamic state
OOOOOO What is a constitutive equation and how a thermodynamic model works
OOOOOO De�ne the process units
OOOOOO State the energy and the mass balances of a unit
OOOOOO State the modeling equations of a unit
OOOOOO State the assumptions of a model. Be able to explain the level of detail and complexity trade-o�

OOOOOO
Realize a degree of freedom analysis, de�ne the speci�cations, what are dependent and independent
variables

OOOOOO
Solve a unit model using a sequential approach, be able to explain the pro and cons of the sequential
approach

OOOOOO Explain the solving methods that can be used in a sequential solving approach

OOOOOO
Solve a unit model using a simultaneous approach, be able to explain the pro and cons of this
approach. What are the more important conditions for using a simultaneous approach. How does
it compare with sequential approach. How to solve a simultaneous model.
Solve a Flowsheet

OOOOOO Analyze the degrees of freedom of a �owsheet

OOOOOO
Apply the Motard method to de�ne a sequence to solve a sequential modular simulation problem.
What are the di�culties of the sequential approach.

OOOOOO Numerical methods for solving the sequential problems

OOOOOO
State a simultaneous solving problem for �owsheeting, what are the necessary conditions and the
di�culties of using a simultaneous approach

OOOOOO Numerical methods for solving simultaneous problems.
OOOOOO Pro and cons of simultaneous and sequential approaches

Thermo-economic objective functions

OOOOOO Di�erent type of thermo- economic optimization problem
OOOOOO Estimate the investment of a process �owsheet and annualize the investment

OOOOOO
Formulate a thermo-economic objective function: operating cost, e�ciency, investment, total cost,
environmental impact, life cycle impact.
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Speci�c objectives

Progress Topic
Optimization problems

OOOOOO De�ne the di�erent possible use of optimization in process �owsheeting
OOOOOO State a problem of parameter identi�cation
OOOOOO What is the data reconciliation

OOOOOO
How to analyze the redundancy of a system: overspeci�cation, missing measurements, just calcu-
lable systems.

OOOOOO Stating an optimization problem: black box, simultaneous, hybrid methods
OOOOOO Pro and cons of the di�erent approaches

OOOOOO
Describe the di�erent methods to solve optimization methods, what are the pro and the cons of
each of them

OOOOOO Solving an unconstrained optimization problem
OOOOOO Solving a multi-variable unconstrained optimization problem
OOOOOO Solving a multi-variable constrained optimization problem
OOOOOO Solving a MILP optimization problem
OOOOOO Solving a problem using heuristic methods
OOOOOO Stating a multi-objective optimization problem
OOOOOO Choosing a optimization solving method
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Chapter 1

Introduction

In this chapter the basic notions for the modeling and optimization of energy conversion systems are
introduced: systems, models, state variables and degrees of freedom.

1.1 Introduction

This course deals with the modeling and the optimization of industrial energy systems. An industrial
energy system may refer to a whole process, a part of a process or set of processes that generate through
energy conversion other forms of energy or consumer goods. These processes are for example:

1. Processes for the production of electricity: today over 80% of the world's electricity generation is
achieved through thermal conversion of the energy resource.

2. Energy conversion processes: for example heat pumps, hydrogen production processes, biomass or
coal gasi�cation.

3. Chemical and petrochemical processes.

4. Food industry processes.

From a thermodynamic point of view, the common point between these processes is the transformation
of raw materials into products and by-products through a set of operations (Figure 1.1). In a general
way, this system can be described considering that the conversion of raw materials and energy occurs
through a set of interconnected equipments:

� heat exchangers, evaporators, condensers

� distillation columns, cyclones, �lters, absorbers

� boilers

� gas turbines, motors

� compressors, turbines

� reactors, reformers, ...

Each equipment unit performs its tasks through series of transformations of thermodynamic states: heat
exchange, separation, reaction,... The di�erent operations can be strongly integrated in one single unit.
For an engine, for example, chemical reactions (combustion and production of pollutants), di�usion and
mixing, heat exchange and expansion occur simultaneously. From a system point of view, it is possible to
gather the production units in di�erent sub-systems. The main operations will be grouped in sub-systems
called processes, which will often rely on production supports: water, solvent, catalysis... The preparation,
treatment, distribution and recycling of the production supports constitute as well sub-system (process)
of the main system:
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CHAPTER 1. INTRODUCTION

� hot water network

� �lters, �lters clean-up

� catalyst regeneration

� packaging, bottles washing, ...

In industrial processes, the thermodynamic state changes are achieved through the energy supply from
outside the system. Consequently, this energy needs to be converted and distributed in an appropriate
form for the required transformation. It will be in di�erent forms: electric, mechanic, thermal,... The
operations of the transformation of energy resources into useful energy are grouped in a sub-system called
energy conversion that includes:

� boilers

� gas turbines, combustion engines, electric motors

� steam distribution, steam turbines

� heat pumps, refrigeration cycles

� hot oil network,...

In such transformations, the resources (i.e feedstock and energy) are not fully converted into the �nal
products and by-products, but are also present in the emissions and in the losses. The waste produced
by the process is often treated, and, if possible, recycled before being disposed, for the protection of the
environment, but also for economical reasons. The system will therefore include several sub-systems for
waste treatment, including:

� waste water treatment

� elimination of solvents residuals

� sieving and �ltration systems

� gas treatment systems: scrubbers, �lters, catalytic systems,...

Energy

Processes

Waste treatment

Resources

Energy

Energy

Products
By-products

Waste

Production
conversion support

Figure 1.1: Integrated energy system.
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All these transformations follow the �rst principle of thermodynamic (i.e. energy conservation) and the
second principle of thermodynamics (i.e. transformations occur with an increase in entropy in an iso-
lated system). The entropy can be seen as a measure of disorder. The economic indicator de�ning the
performance of the plant, can be expressed by:

Pro�ts = Incomes-Operating costs-Investments

where the incomes are the results of the sale of all products and by-products, the operating costs
represent the expenses relative to the operation of the plant (i.e. the purchase of raw materials, energy
and production supports, the cost of emissions and waste, the costs of maintenance and taxes), and the
investments are the �nancial means required for the purchase of all the equipments. These costs need to
be expressed in a coherent monetary unit (for example CHF (2014)/year).

Besides the economic performance, which is highly dependent on the economic position of the investor
and the socio-economic context, the engineers use di�erent performance indicators that rely on thermo-
dynamic values de�ning the state of the process. Some examples are the energy e�ciency (ratio energy
in the products/energy input), the mass conversion (ratio kg of products/ kg of raw material) and the
exergy e�ciency (ratio exergy in the products/exergy drawn from the resources). The evaluation of these
indicators allows the engineers to better understand the energetic and exergetic aspects of the processes
they investigate, and to propose improvements with the objective of increasing the performance. More
details about the notion of exergy are provided in [3, 14].

Nowadays, there are challenges related to the sustainable development of our society, besides the eco-
nomic challenges related to the pro�tability of an industrial process. The manufacturers need to try to
maximize the performances of their production units, in order to satisfy the constraints of the Kyoto
agreements, which aim at reducing and stabilising the CO2 emissions. Consequently, the target is to
maximize both the e�ciency and the economic pro�ts.

In this context, the engineers develop on the one side increasingly complex energy conversion concepts,
which are based on more and more advanced technologies such as fuel cells. On the other side, engineers
try to exploit the full potential of the existing systems to improve their performances, both in terms of
energy conversion e�ciency and of emissions reduction. The complexity of the implemented systems, and
the optimal use of purchased raw materials and energy, has led to the development of highly integrated
energy systems which aim at the maximum conversion of the exergetic input. Some examples are fuel cell
systems and integrated gasi�cation and combined cycles. In the �eld of electrical energy production, the
current tendency is to promote the use of renewable energy sources (e.g. biomass, waste) or of low quality
resources (e.g. coal). However, these options also face di�culties: resource variability, pollution risks, risk
of failure, etc.. Moreover, co-generation systems gain more and more importance. Co-generation systems
satisfy the thermal energy demand in an exergetic optimal way by transforming the fuel in high-quality
energy before using the degraded energy in the form of useful heat.

Regarding all these di�culties, modeling and optimization tools play an essential role for mastering
the design, behavior and operation of such systems. The objective of energy systems modeling is to
describe the systems behavior and the in�uence of the di�erent parameters on the performance, by ap-
plying computer-aided process engineering tools. The modeling tool computes the thermodynamic states
of the various input and output streams, as well as those internal to the plant. Consequently, the overall
performance of the system can be calculated, as well as the performance of each process unit (i.e equip-
ment). In the perspective of decision-making, the modeling tool allows evaluating the impact of decisions
on the performance without recurring to the experimental testing, which may be very expensive. The
modeling tool is very useful to evaluate decisions concerning the system design, because, in this case, an
experimental system does not exist.

The aim of the optimization is to identify the best decisions to be taken in order to improve the
performance of the system. Modeling is an essential step prior to the optimization, as it allows to compute
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CHAPTER 1. INTRODUCTION

the system's performance. Nowadays, optimization tools are used all along the life of an industrial energy
system, from its design to its decommissioning:

� In research and development (R&D), engineers use modeling and optimization to identify the best
experimental operating conditions, to conceive the experimental set-up, to exploit the results, to
estimate the change of scale (passing from a pilot plant to an industrial system), etc.

� For the process design, modeling and optimization tools are applied to determine the best con-
�guration, the optimal size of the equipments and the best operating conditions, to conceive the
control system and the optimal strategy of operation, to estimate the environmental impact, and
to evaluate safety and reliability aspects.

� During the process installation, modeling tools are used to verify the performance and the speci�-
cations.

� The process operation is continuously optimized. This is done by �rst predicting and monitoring the
process and equipments performance, and then by adapting the speci�cations (planning, predictive
maintenance, online optimization, model-based control, etc.).

� Modeling and optimization tools are also used to optimize the investments for the plant upgrading:
retro�t study, capacity increase, etc.

� Finally, modeling tools are applied to conceive the decommissioning of the plant in the most ap-
propriate way.

1.2 Modeling

A model has to calculate and characterize the transformations of thermodynamic states that take place
in the process. Therefore, the process behavior and its operating limits has to be transcribed into a
mathematical model. Considering the energy system as a whole, the mathematical model is an 'operator'
transforming the inputs into output values (Figure 1.2).

Outputs

MODEL

Inputs

Figure 1.2: Model= mathematical transformation.

For the modeling, a distinction must be made between the materials inputs, and the information
inputs. A material input can be an information output, because it is the result of the model resolution.
For example, the amount of fuel entering a system, which can be calculated to satisfy a given heat
demand. The model inputs are the speci�cations: the demand that the system must satisfy, the raw
materials and resources properties, the characteristics of the environment (e.g. ambient temperature and
pressure, economic data, cooling water temperature, etc.) and the market speci�cations (e.g. products
quality and by-products emission limit, etc.). The outputs are the products, emissions and wastes (e.g.
di�erent forms of degraded energy and pollutants), the operating costs, the equipment size, etc.. In
addition to the values that characterize the system's performance, the model will also compute the values
of the variables that characterize the state of the system. The mathematical model of the system can
be represented by Eq. 1.1 where Xoutput is the value of the output variables and Xinput the value of
the input variables. The complexity is that it is not easy to get an explicit form for the model which
will be described in a general way by a system of equations to be solved as Eq. 1.2, where Xstate are
the variables characterizing the State of the system. The variables Xoutput are a subset of the variables
Xstate.
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Xoutput = F (Xinput) (1.1)

F (Xinput, Xstate) = 0 (1.2)

Conceptually, an industrial energy system can be represented as a set of interconnected boxes like in
Figure 1.3. The interconnections represent streams that link boxes between them. Each box, namely a
process unit, represents a mathematical operator (model) which transforms the state of the connected
�ows. This mathematical operator represents the thermodynamic transformations by the physical and
chemical phenomena that occur in the unit. The mathematical operator represents thus the mass and
energy balances, as well as the mathematical formulation of the thermodynamic transformation taking
place in the unit: heat transfer, mass transfer, chemical reaction, expansion, compression, etc. Each
connection between two units de�nes a stream whose state allows to characterize the material and/or
energy it transfers from one unit to another. In an energy system, di�erent types of streams can be
di�erentiated:

� Material streams representing the �ow of material in the pipes

� Thermal streams representing heat transfers

� Mechanical streams that represent the work

� Electrical streams that represent the transfer of electric power

� The �ow of information may be used to represent the control loops

Figure 1.3: Flowsheet of the nitric acid process.

The model of such a system will include three types of relationships:
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1. Transfer relations representing the transfer of information between units and therefore the way in
which the units are interconnected. These relationships de�ne for example that the compressor
outlet stream enters the heat exchanger that follows.

2. Modeling equations, which mathematically represent the mass and energy balances, as well as the
physical and chemical transformations that take place in the unit.

3. Thermodynamic binding relations that link state variables between them and characterize the
material stream.

1.3 The model

A model is a set of interconnected modules (units). Each module is characterized by the equations
that model in a generic way its operation; these equations are called modeling equations. A unit can
schematically be represented by Figure 1.4.

Outputs o

unit j

Inputs i

parameters

Figure 1.4: Schematic representation of a unit.

The modeling equations constitute a set of equations F (Xstate) = 0 categorized into di�erent groups:

� Mass balances

� Heat balances

� Sizing equations / performance equations

� etc.

The modeling equations of unit j de�ne a subset of the matrix F (Xstate) = 0:

Fj(Xstate,j) = 0 (1.3)

with:
Xstate,j = (mij , Pij , hij ,moj , Poj , hoj , parj)

mij �ow of the input stream i of the unit j
Pij pressure of the input stream i of the unit j
hij molar enthalpy of the output stream o of the unit j
moj �ow of the output stream o of the unit j
Poj pressure of the output stream o of the unit j
hoj molar enthalpy of the output stream o of the unit j
parj parameters of the unit j

The connection of two units de�nes the variables Xstate which are shared by the units (dij=dok if the
input stream i of the unit j is the output stream o of unit k). By describing the interconnections between
units, a set of equations and variables that describe the system modelling are obtained. The number of
modelling equations ne is lower than the number of state variables Xstate nv. The di�erence between the
number of state variables and equations is called degrees of freedom DoF :

DoF = nv − ne (1.4)
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In order to de�ne the state of the system, the DoF has to be determined. To do this, nDOF equations
are added. These equations are divided into two sets: speci�cation equations and set point equations.

The speci�cation equations ns de�ne the conditions that the system must satisfy:

� External conditions: fuels characteristics , ambient temperature, market conditions, etc.

� State of the equipments of the installation: fouling of heat exchangers, expansion e�ciency, char-
acteristic curves of pumps and compressors, etc.

� Requirements that the process must satisfy: mechanical power of the turbines, temperature at the
heat exchanger outlet, etc.

The state of the system's elements are determined by parametric identi�cation based on one or several sets
of measurements that have been rendered consistent by a validation calculation. Based on an appropriate
de�nition of the state variables, the speci�cation equations can be written in the simple form Eq. 1.5.

S(Xstate) = 0si(Xstate) : xi − vsi = 0, ∀i = 1, ..., ns (1.5)

with:
S(Xstate) vector of speci�cation equations
si(Xstate) element i of the vector S that de�nes the speci�cation i
xi state variable corresponding to the speci�cation i
vsi value of the speci�cation i
ns number of speci�cations

The set point equations relate to the variables which the engineer can manipulate to optimize the
process performance. The value of the set point results from the engineers instructions. These variables
are called decision variables nc. The number nc represents the actual number of degrees of freedom of
the process. Like the speci�cation equations, the set point equations take the form of Eq. 1.6:

C(Xstate) = 0ci(Xstate) : xi − vci = 0, ∀i = 1, ..., nc (1.6)

with:
C(Xstate) vector of set point equations
ci(Xstate) element i of the vector C that de�nes the set point i
xi state variable corresponding to the set point variable i
vci value of the set point i
nc number of set point variables

To be computable, the system must satisfy Eq. 1.7. This condition is necessary but not su�cient, because
in addition the equations F (Xstate), S(Xstate) and C(Xstate) have to be independent.

ndof = nc + ns (1.7)

In addition to the knowledge of the state variables, the values of some indicators may also be needed.
These values are determined by equations known as performance equations/linking equations. Each
of these equations is an additional variable. The system of equations which sets linking variables de�nes
a square system that can be calculated once the value of Xstate is known. This set of equations can
include, for example, the calculation of the e�ciency or of the pro�t.

10



CHAPTER 1. INTRODUCTION

1.4 State variables

1.4.1 State variables of material streams

The transfer of material/mass is characterized, on the one hand, by the extensive variables (e.g. partial
�ow or �ow) and, on the other hand, by intensive variables (e.g. composition). To characterize the
transfer of energy, several variables can be used: pressure, temperature, total enthalpy, mass or molar
enthalpy, entropy, etc.

From a thermodynamic point of view, a stream of nx substances will be completely characterized by
�xing the value of ne extensive variables (with ne ≥1) (e.g. �ow), and 2 + nx − ne intensive variables.
Then the other variables can be calculated based on the thermodynamic state equations. For example,
a steam �ow (mono-substance �uid) is fully characterized by �xing its �ow and two intensive variables
which characterize its thermodynamic state: for example the entropy and pressure. By the thermody-
namic relations, other state variables can be calculated based on the value of the two chosen variables.

It should be noted that the choice of the independent variables de�ning the thermodynamic state of a
�uid has to ensure that:

1. The variables are independent (i.e. choose at least 1 extensive variable).

2. The thermodynamic equations allow to represent the thermodynamic state in a bi-univocal way.
The choice of the temperature and pressure as state variable to represent the thermodynamic state
of water is not valid if a phase change takes place (see Figure 1.5). At the saturation pressure,
the same temperature corresponds to several enthalpy states (between liquid and saturated vapor)
corresponding to di�erent vapor fraction values. If a phase change occurs, it is therefore necessary
to �x in addition to the temperature another variable, either the vapor fraction, or the enthalpy, in
order to determine the thermodynamic state.

Figure 1.5: Temperature-Enthalpy diagram of water.

1.4.2 State variables of thermal streams

A thermal stream (heat stream) is characterized by the amount of energy that is transferred. It is
commonly expressed per unit of time thus de�ning the transferred power. In some cases, the stream
may be characterized by its temperature level, although this de�nition is is only indicative and cannot
be generalized.
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1.4.3 State variables of mechanical streams

A mechanical stream is characterized by the power and the speed of rotation of the shaft.

1.4.4 State variables of electrical streams

An electricity stream is by analogy characterized by its intensity and its tension and or power.

1.4.5 Variables of unit models

The parameters of models are variables that describe the operation of the unit, for example the operating
pressure, pressure loss, mechanical power, the heat exchange area, etc. The de�nition of these parameters
is linked to the modeling equations. Their choice may have a considerable impact on the model resolution.

1.4.6 Which state variables to use?

State variables are required for the model calculation. Due to the number of degrees of freedom of the
concerned state, it is important to choose the independent variables and those that will be calculated by
the thermodynamic model. If the choice of the variables is completely free for the model establishment
the following criteria are recommended to make the best choice.

Choice of an intensive variable rather than extensive variable

Molar or mass quantities are preferred to total quantities, using only one �ow rate quantity. This is jus-
ti�ed by the fact that the thermodynamic quantities are calculated in molar values. This allows to avoid
the degeneration of the thermodynamic state when the �ow is zero. The calculation of the temperature
on the basis of the total enthalpy may be impossible when the �ow is zero. In this case, the equation is
undetermined, which is not the case with the molar enthalpy, even if the state does not exist.

Make sure that the variables represent the state in bi-univocal way

Although the thermodynamics are developed as a function of the temperature and pressure, the choice
of the molar enthalpy will be preferred to that of temperature in the case of a mono-substance �uid.
The temperature does not completely characterize the saturation and an additional variable (the vapor
fraction) must be given to calculate the enthalpy. On the other hand, the molar enthalpy and pressure
perfectly characterize the enthalpy content of the stream. The choice of the molar enthalpy is thus jus-
ti�ed.

The total enthalpy is calculated by Eq. 1.8:

Hi = hi · ṁi (1.8)

and the temperature by 1.9:

Ti = f(hi, Pi, xi) (1.9)

The function f(hi, Pi, xi) corresponds to a thermodynamic calculation of the equilibrium in �xed molar
enthalpy, pressure, and composition.
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Chapter 2

Thermodynamic properties

This chapter introduces the principles for the calculation of the thermodynamic properties of a stream.
The key elements are the constitutive equations.

2.1 Introduction

The thermodynamic models allow to represent a set of thermodynamic properties of a stream with nc
compounds based on the knowledge of nc + 2 state variables. Thermodynamic relationships are repre-
sented by equations of state which are generally expressed in terms of mass or molar magnitudes. These
are mathematical expressions of the well-known diagrams from the thermodynamics: T-s, h-s, p-v, etc.
diagrams.

Typical thermodynamic properties calculated by the thermodynamic model (i.e. constitutive equations)
are:

� Density, speci�c volume (v)

� Enthalpy (h), entropy (s), speci�c heat (cp)

� Viscosity, thermal conductivity, di�usion coe�cients, surface tension

� Phase equilibrium (L-V, L-L, L-L-V)

� Saturation point, dew point

� Heat of vaporization

� Saturation pressure

� Phase distribution coe�cients

� Chemical reactions

� Heat of reaction

� Equilibrium constants

The thermodynamic models mathematically represent the properties and interaction forces. The ther-
modynamic properties are related to the energy storage mode in molecules. The di�erent types are:

� Binding energy between atoms

� Heat of reaction

� Heat of formation

13
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� Equilibrium constant

� Energy of the molecules

� Translation: perfect gas

� Rotation and vibration properties de�ning the contributions to cp, enthalpy and entropy

� Interactions between molecules

� Attraction and repulsion between the molecules which are represented by the equations of
state. These allow to calculate the mixing properties by introducing corrections to perfect gas
law and which are important for calculating the transport properties and the phase changes.

The properties of the mixtures are determined on the basis of the thermodynamic properties of pure
substances. These are obtained from literature. For well-known substances, such as water, air and CO2,
the data have been compiled and very precise empirical equations have been established. For others,
general equations are developed based on a limited number of properties and on the observation that
for similar substances the properties are identical in reduced coordinates. The properties that should be
provided for a substance are:

� Critical properties: temperature, pressure, density

� Acentric factor

� Boiling temperature and enthalpy of vaporization

� Fusion temperature and enthalpy

� Enthalpy and the free enthalpy of formation

Correlations can be used to estimate the values of the missing parameters based on these data. One
should however be aware that for a substance the speci�c values are better than those obtained with the
correlations. Most modeling software o�er thermodynamic models and a database of substance proper-
ties. For example, NIST (http://webbook.nist.gov) or DIPPR http://www.aiche.org/dippr).

When using these databases for the development of a model, one has to verify the sources of the data from
the database and if necessary verify that the validity range (temperature, pressure and concentration)
corresponds to the one of the model. This is very important because in some cases, correlations with
high exponents are used which can lead to undesirable reverse answers.

2.2 Enthalpy calculation

The equations for calculating the enthalpy of a mixture are given here as an example. For the calculation
of the energy balances, the enthalpy of a gas must be assessed on the basis of the temperature and
pressure. For an ideal gas, the following formulas are used.

2.2.1 Gas enthalpy

Hg
id(T, P, xi) =

∑
i

∆Hi(T
o) +

∫ T

T o

(∑
i

xi · Cpi(T )

)
· dT

Cpi(T ) = ai + bi · T + ci · T 2 + di · T 3

It should be noted that the ideal gas enthalpy does not depend on the pressure.
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2.2.2 Liquid enthalpy

The liquid enthalpy is assessed based on the gas properties and on the vaporization enthalpy which can
be assessed with the Watson formula. The temperatures are expressed in Kelvin and the enthalpy of
vaporization is calculated with regard to a reference with an known vaporization enthalpy and tempera-
ture. In most cases, the reference temperature is the boiling temperature. The scale exponent 0.38 can
be used as approximation if the exponent of the substance is unknown.

∆Hvapi(T ) = ∆Hvapi(T
b
i ) ·

(
T criti − T

T criti − T bi

)0.38

The enthalpy of the liquid is given by:

H l
id(T, P, xi) =

∑
i

∆Hi(T
o) +

∫ T

T o

(∑
i

xi · Cpi(T )

)
· dT −

∑
i

∆vapi(T )

2.2.3 Enthalpy of liquid-vapor mixture

If the vapor fraction α is known, the enthalpy of the liquid-vapor mixture is calculated by the sum of
the enthalpy of the liquid and the vapor. The enthalpy of the liquid H l

id(T, P, x
l
i) and of the vapor

Hg
id(T, P, x

g
i ) are calculated for di�erent liquid and vapor compositions obtained from the liquid-vapor

equilibrium calculation.

H l−v
id (T, P, xi) = α ·Hg

id(T, P, x
g
i ) + (1− α) ·H l

id(T, P, x
l
i)

2.3 Liquid-vapor equilibrium calculation

The thermodynamic model is composed of:

� Equations: f(variables, parameters)=0, mass and energy balance, equilibrium conditions

� Coherent choice of thermodynamic laws (equations of state or correlations) setting the model va-
lidity range and of the necessary data.

Example of state equation: Soave equation. The Soave equation of state is given by:

P =
RT

V − b
− a(T )

V · (V + b)

with
a = ac

[
1 + (0.48 + 1.574ω − 0.176ω2)(1−

√
Tr)
]2

ac = 0.42748 (RTc)
2

Pc

b = 0.08664RTc

Pc

Several auxiliary variables are de�ned Z = PV
RT , A = a·P

(RT )2 and B = b·P
RT . The values of Z are solution of

the equation Z3 − Z2 + (A−B −B2) · Z −A ·B = 0. With these variables, the fugacity coe�cient can
be calculated:

lnφ = Z − 1− lnZ −
∫ V

∞

Z − 1

V
= Z − 1− ln(Z −B)− A

B
ln
Z +B

Z
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2.3.1 Equilibrium conditions

The partial fugacities of the mixture constituents i at T and P must be equal in the two phases: fLi = fVi .
These variables are generally expressed by the fugacity coe�cient (φ) for the vapor phase and the activity
coe�cient (γ) and the reference fugacity f∗ for the liquid phase:

φi · yi · P = γi · xi · f∗Li

The equilibrium coe�cient Ki is de�ned by the ratio of the mole fraction in the vapor phase yi and in
the liquid phase xi:

Ki =
yi
xi

=
f∗Li · γi
P · φi

knowing that

φi = φi(T, P, ȳ, Θ̄φ)

γi = γi(T, P, x̄, Θ̄γ)

with:
x̄ and ȳ vectors of molar fractions
Θ̄φ and Θ̄γ vectors of parameters

The number and the values of the parameters depend on the choices made for physical-chemical laws.
Therefore Ki can be written as: Ki = f(T, P, x̄, ȳ, Θ̄).

Remember that f∗Li is the fugacity of the constituent i (pure liquid) at the temperature and pressure
of the mixture or the reference fugacity. This term only depends on T and P. This is the symmetric
convention. If the constituent does not exist in the liquid state, i.e. if it is noncondensable, the reference
is the in�nite dilution state. This is the asymmetrical convention. At moderate pressure:

f∗Li = f∗LSi · exp
[
vsi · (P − P s)

RT

]
f∗LSi = PSi · φ∗S

i (2.1)

with:
f∗LS
i fugacity of pure substance at saturation at the temperature of the mixture
φ∗S

i fugacity coe�cient of saturated vapor under the same conditions
PS
i saturated vapor pressure of component i (calculated using the vapor equation of state)

If the pressure of the system is chosen as a reference, these relations are not modi�ed. If the reference
state of the liquid is chosen to be that of the pure substance at pressure P r and at the temperature of
the system:

f∗LRi = P ∗LS
i · φ∗S · exp

[
vsi · (P r − P s)

RT

]
f∗Li = fLRi · exp

[
vLi · (P − P r)

RT

]
(2.2)
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The molar volume of the liquid is generally considered to be independent of pressure, which justi�es
the approximations made in the formulas above. In addition, this hypothesis is found implicitly when
calculating φ for the component i. The advantage of choosing the reference pressure equal to 0 is that the
two phases have the same reference state. If the reduced temperature (Tr = T/Tc) of the component i is
greater than 1, the saturation pressure cannot be calculated, an extrapolated value must be taken or the
fugacity of the liquid has to be calculated in another way. This case is not treated here (i.e. asymmetric
convention). It can therefore be assumed that the relationship: Ki = f(T, P, x̄, ȳ, Θ̄) is known. It is
useful to remember that there are various approximations that represent a set of possible behaviors for
the vapor and liquid phase. Figure 2.1 summarizes these opportunities.

Figure 2.1: Vapor and liquid phase approximations.

The fugacities of the pure component in the mixture conditions T and P are noted f
′L
i and f

′V
i for the

liquid and vapor phase respectively. Note that Kr (Raoult) and Kid (Ideal) are independent of the phases
compositions and that they give a fairly good approximation of the K values.

2.3.2 Liquid-vapor equilibrium model: Speci�cations

The equilibrium equations are written:

Ki = f(T, P, x̄, ȳ, Θ̄) with i = 1, .., n (2.3)

The parameters Θ̄ are determined based on laws that de�ne the partial fugacities of components. The
relations de�ning Ki are:

yi = Ki ·Xi with i = 1, .., n (2.4)

xi =
yi
Ki

with i = 1, .., n

The material balances are written according to the two equations below:

xi =
zi

1 + α · (Ki − 1)
(2.5)

yi =
Ki · zi

1 + α · (Ki − 1)
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These equations are derived from the equations F · zi = V · yi + L · xi with α = V/F the vapor fraction
(1 − α = L/F the liquid fraction). The variables F, V and L are, respectively, the number of moles
contained in the whole system, in the vapor phase and in the liquid phase. The corresponding molar
fractions are zi, yi, which have to satisfy: ∑

xi − 1 = 0 (2.6)∑
yi − 1 = 0

One of these two equations may be replaced by:

∑
xi −

∑
yi = 0 (2.7)

The data of equilibrium problems involve the variables F and z satisfying the relation
∑
zi = 1. Con-

sidering that F = 1 (one mole of mixture) and that zi has been normalized, V = α and L = 1 − α. A
count of the equations and variables leads to Table 2.1.

Equations Numbers Variables Numbers
2.3 n T,P,x 2n+2
2.4 n y n
2.5 n Ki 1
2.6 2 α -
Total 3n+2 Total 3n+3

Table 2.1: L-V equilibrium: variables and equations.

However, considering the sum of the equations Eq. 2.4 and Eq. 2.5, one realizes that the 2 equations Eq.
2.6 are not independent. Only one of them should be retained or only the equation Eq. 2.7. This nor-
mality equation is denoted S(V AR) = 0. The notation "VAR" refers to one of the previously considered
variables, for example P, T, α, etc. The equation S(V AR) = 0 designs any of the equations Eq. 2.6 or
2.7. The count is therefore:

(3n+1) equations and (3n+3) variables

Furthermore, one can calculate any state function (the one that is considered the most often in the
liquid-vapor equilibrium is the enthalpy H ) either for a constituent i in the system or in one of the two
phases, either for all of these. For example:

H = α ·
∑
i

xi ·HV
i + (1− α)

∑
i

xi ·HL
i (2.8)

These equations introduce as many new variables as there are equations. Finally:

(3n+2) equations and (3n+4) variables

It will thus be necessary to establish two additional speci�cations. According to the choice that is made,
one distinguishes the equilibrium calculations (or partial vaporization: �ash):
at �xed T and P
at �xed P and α, special cases: the calculations of the dew T (α = 1) and bubble T (α = 0))
at �xed T and α, special cases: the calculations of the dew P (α = 1) and bubble P (α = 0))
at �xed P and H
at �xed P and S
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2.3.3 Solving the model equations: Moderate pressure

Analysis of the incidence matrix

In the incidence matrix, the lines represent the equations, while the columns represent the variables. The
non-zero elements of the incidence matrix are those for which the variable i is involved in equation j.
The following table represents the incidence matrix for the equilibrium calculation of two components:

Inc. Eq. K1 K2 x1 x2 y1 y2 α P T H
2.3 X X X X X X X

X X X X X X X
2.4 X X X

X X X
2.5 X X X X

X X X X
2.6 X X X X
2.8 X X X X X X X X

Note that only the relationship Eq.2.8 allows to calculate H. The residual system 2.3-2.6 forms a irre-
ducible matrix (3n + 1) · (3n + 3). The resolution of such a system of non-linear equations will quickly
become problematic (for example, if n>5). Several methods exist of course to solve such problems
(Newton-Raphson, Marquardt, etc.), but they require an iterative procedure and are subject to many
imponderabilities (dependence on the initial point, relaxation, etc.). In addition, partial derivatives have
to be calculated and the matrices (Jacobian for example) have to be de�ned on the basis of the problem
to be addressed.

Calculation algorithms

Therefore, it can be investigated if the dimension of the problem of (3n+1) equations can be reduced.
To do this, the problem at given T and P is chosen (EFA). As previously stated, the coe�cient K of the
component i can be approximated by: Kr(T, P ) or Kid(T, P ) and consequently, if α is approximated,
x(x̄) can be computed by the relation Eq. 2.5, y(ȳ) by Eq. 2.4 and �nally the coe�cients K of each
constituent by Eq.2.3. This procedure is schematically represented here:

Kr a x̄ ȳ K
2.3 2.4 2.5

The simpli�ed notation is: Kr, α→ x̄, ȳ → Kr

The notation x̄, ȳ is used because depending on the type of problem, the �rst or the second expression of
Eq.2.4 and 2.5 have to be applied. The variables K depending in general on x̄ and ȳ, an iteration over K
is needed to check that the normality condition is satis�ed and α has to be modi�ed accordingly. There
are two nested loops of convergence as illustrated here:

α, K r ?

cα

S(α)=0K constant?T and P: x̄, ȳ

The expression S(α) = 0 corresponds to
∑
i xi −

∑
i yi obtained for a value α when the value of K is

converged. This value and eventually others are used to determine the adjusted value of α satisfying the
condition of Eq. 2.6. The remaining questions are:
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� How can the adjusted value of α be calculated to promote the convergence?

� Can the convergence of K also be promoted?

� Are all the constraints satis�ed, for example 0 < α < 1?

� Is the form S(VAR)=0 (S(α) = 0) always the same in all cases?

� Which convergence tests can be performed?

These questions will be addressed after having set the simpli�ed iteration schemes for other equilibrium
calculation types.

Consider the case where T and α are given (ETA)

P, K r ?

cP

S(P)=0K constant?T and α: x̄, ȳ

And for P and α �xed (EPA):

T, K r ?

cT

S(T)=0K constant?P and α: x̄, ȳ

The following case is di�erent because it involves the enthalpy (EPH). Looking at the incidence matrix,
it is noted that it is necessary to go through an auxiliary variable. There is a choice between α and T.
These variables can be reversed afterwords.

r ?

cT
cα

α, K S(T)=0K constant?H and P: x, y
?

H(α)=0

The condition H(α) = 0 is described in such a way that the enthalpy of the system is the one which has
been imposed and called Hd: H(α) = H(T, P, x̄, ȳ, α)−Hd = 0.

If an equilibrium has to be solved at �xed T and H, the resolution would be similar to the previous one;
i.e. iterations over the pressure (at the condition that the enthalpy depends on pressure, which is not the
case for ideals and perfect gases).

Convergence criterion, resolution and acceleration

Based on the PT mode, the di�culties which might arise are �rst described. There is a choice between
three expressions for S(α):
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S1(α) =
∑
i

xi − 1 =
∑
i

zi
1 + α(Ki − 1

− 1

S2(α) =
∑
i

yi − 1 =
∑
i

Ki · zi
1 + α(Ki − 1

− 1

S3(α) =
∑
i

xi −
∑
i

yi =
∑
i

(1−Ki) · zi
1 + α(Ki − 1

− 1

(2.9)

For given values of Ki, these three functions evolve as shown in Figure 2.2.
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Figure 2.2: L-V equilibrium calculation.

In this case, the S function is unimodal and is therefore preferred. If S1 or S2 is selected, there are
two solutions and with some resolution methods the solution tends towards α = 0 or α = 1. To �nd
the solution of S(α) = 0 the Newton method, the 'regula-falsi' method, the Wegstein method or even a
parabolic interpolation method can be used. Some convergence methods may lead to a value of α outside
the domain 0 < α < 1. Before accepting the value provided by the convergence algorithm, this value has
to be tested, if α ≤ 0 then α = 0 or if α ≥ 1 then α = 1. The convergence tests are of two types:

∣∣S(αk+1)− S(αk)
∣∣ < ϵ1∣∣αk+1 − αk
∣∣ < ϵ2

These two tests have to be satis�ed before completing the calculation. Finally, the promotion of the
convergence of the inner loop must cover each Ki. Experience shows that iterations on this loop converge

21



CHAPTER 2. THERMODYNAMIC PROPERTIES

quickly by simple substitution. One has to be more careful in the case of highly non-ideal systems where
very complex equations of state are used (Soave, NRTL, UNIQUAC,...). It will be necessary to use
methods like Marquardt or Broyden that will be described later.

2.4 Importance of the correlations coe�cients validity limit

To illustrate the importance of the validity range of the correlations, one has to look at the shape of the
equation for the calculation of the enthalpy:

Hg
id(T, P, xi) =

∑
i

xi ·∆Hi(T
o) +

∫ T

T o

(∑
i

xi · Cpi(T )

)
· dT

Cpi(T ) = ai + bi · T + ci · T 2 + di · T 3

Hg
id(T, P, xi) =

∑
i

xi ·∆Hi(T
o)

+
∑
i

xi ·
{
ai · (T − T o) +

bi
2
· (T 2 − (T o)2) +

ci
3
· (T 3 − (T o)3) +

di
4

· (T 4 − (T o)4)

}
This equation takes the form of the curve in Figure 2.3 with the coe�cients values taken from literature
[20]. It can be noted that this formula leads to a decrease of the enthalpy with the temperature, which
does not represent the actual behavior of the �uid. Having noticed this anomaly, the authors proposed
other values for the coe�cients which represent more adequately the enthalpy at high temperature. It
should be noted that the two correlations give quite di�erent results and that correlation 1 is aberrant.
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Figure 2.3: Enthalpy calculation based on the correlations [20].
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Chapter 3

Unit models

This chapter explains what a is process unit model and how it is solved. As an example the unit models
of several equipments are illustrated.

3.1 Introduction

The �rst step of developing a process model (Figure 3.1) is to de�ne the set of equations that describe
the process behavior. This model is established from a list of basic equipments (process units) that are
interconnected. The equations system F (X) of the modeling equations is generated from the units and
their interconnections. Each unit brings its list of equations, which is called unit model. The role of
the engineer who uses a �owsheeting software is to choose the unit models and assemble them. In this
chapter, the common unit models used in energy systems are described (knowing that this list is not
exhaustive).

Figure 3.1: Process unit model.

These equations are implemented in a traditional manner in most commercial �owsheeting software, AS-
PEN, HYSYS, gProms, Belsim, etc. Depending on the unit type, the equations are therefore generated
automatically and it is not necessary to de�ne them. However, it is useful to know the principles that
are used in order to verify the pertinence of the model used.

During the models development, the form of the equations and the choice of the variables that are involved
are very important, because they determine the model robustness and the resolution method. The use
of optimization techniques imposes also a compromise between the level of detail of the model and the
complexity of the implemented equations.
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3.2 Types of models

A model consists of a set of equations involving a set of state variables. A unit is represented schemati-
cally in Figure 3.2.

Outputs

Unit
Inputs

Parameters

Figure 3.2: Unit model.

Equations: ne
material balances nc

energy balance 1
impulsion balance ni

models equations nm

speci�cations ns

Variables: nv
state Nx = (NOUT +NIN ) · (nc + 2)
parameters np

internal variables nt

The generic term of the balance equations is:

Accumulation=In-Out+Generation-Consumption

In this chapter, only stationary models are treated. In this case, the accumulation term is equal to zero.
The number of degrees of freedom is equal to nDOF = nv − ne and represents the number of variables or
the number of additional equations that are necessary for calculating the unit. The simplest form of the
additional equation is the set-point or the speci�cation (xi = xspeci ). The incidence matrix (Figure 3.3)
is used to identify the number of degrees of freedom. In this matrix, the lines represent the equations
and the columns the variables. In the incidence matrix an non-zero element is written if the variable i
(column i) is involved in the equation j (line j). In this matrix the speci�cation equations are represented
by a line with a single non-zero element. In order to calculate the unit there are two necessary conditions:

� The incidence matrix must be square: as many equations as variables.

� The equations have to be independent. It must be possible to swap the rows and columns so that
a non-zero element appears on each diagonal element of the matrix.

If these two conditions are met, it means that the matrix can be inverted, and the elements on the
diagonal are selected as a pivot (see Gaus-Newton's method and LU decomposition). To solve the model
the matrix has to be invertible. Consequently, the value of the pivot must not become zero during the
procedure of the matrix inversion. In the latter case, the problem is said numerically singular.
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Figure 3.3: Example of an incidence matrix.

3.3 Model resolution

Two strategies for solving a model can be applied: the simultaneous resolution or the sequential resolution.

3.3.1 Simultaneous resolution

For a simultaneous resolution, all the model equations and the speci�cation equations are written. This
produces a system of ne non-linear equations and nv variables (state variables, parameters and internal
variables) to be solved by a suitable method (see Chapter Model resolution). The mathematical expression
is given by:

M(Xx, Xp) = 0

S(Xx, Xp) = 0 =⇒ F (X) = 0(NexNv)

IN(Xx) = 0

with:
M(Xx, Xp) = 0 Model equations
S(Xx,Xp) = 0 Speci�cation equations
In(Xx) = 0 Speci�cation equations of the inputs
F (X) = 0 System of equations to be solved
Xx State variables of input streams
Xp Parameters and internal variables of the model
Ne Number of equations
Nv Number of variables

Example: Turbine model

Figure 3.4 illustrates the turbine model. The su�x s represents the speci�ed values. The objective of this
model is to calculate the mechanical power and the state of the output stream, knowing the �owrate, tem-
perature, pressure and input compositions, the isentropic e�ciency of the turbine and the outlet pressure.

The model equations are:
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W

min
s.

,Tin
s , P in

s , Xin
s

mout
.
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s , Xout

η
is
s

Figure 3.4: Example: Turbine model.

ṁout − ṁs
in = 0 Mass balance

xj
out − xj,s

in = 0 ∀j = 1, ..., nc Mass balance (composition)
hin − h(T s

in, P
s
in,X

s
in) = 0 Constitutive equation: Enthalpy of the input

sin − s(T s
in, P

s
in, X

s
in) = 0 Constitutive equation: Entropy of the input

his
out − h(sin, P

s
out, Xout) = 0 Isentropic expansion equation

hout − hin + ηs
is · (hin − his

out) = 0 Isentropic e�ciency equation
Tout − T (hout, P

s
out, Xout) = 0 Linking equation: Calculation of output temperature

Wout − ṁs
in · (hin − hout) = 0 Energy balance

To these equations, the speci�cation equations are added (inputs and model speci�cations):
Inputs
ṁin − ṁs

in = 0 Input �owrate

xj
in − xj,s

in = 0 Input composition
Tin − T s

in = 0 Input temperature
Pin − P s

in = 0 Input pressure
Model
Pout − P s

out = 0 Output pressure
ηis − ηs

is = 0 Isentropic e�ciency

3.3.2 Sequential resolution

The principle of the sequential resolution is to associate to each variable the equation that allows to solve
it and to determine the resolution sequence. In this approach, the resolution sequence is determined in
such a way that the equations can be solved successively, one after another. This approach is similar
to the sequence of pivoting, while inverting the matrix of equations, solving for each pivot elimination
a non-linear equation. For this approach, the resolution is formulated explicitly wherever possible. To
calculate the ith variable of the model, this translates to Eq. 3.1 where f∗i (xj) is a non-linear expression
representing the ith equation.

xi = f∗i (xj) ∀j = 1, ..., i− 1 (3.1)

In this approach, the sequence's resolution depends on the sequence of the matrix pivoting and so on
the list of speci�cations. In a sequential approach, the input streams are considered as speci�ed, whenever
it is possible. Then a set of speci�cations representing an operation mode of the unit model is chosen.

Example: Turbine model

For the turbine model given by:
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ṁout = ṁs
in

xj
out = xj,s

in

hin = h(T s
in, P

s
in, X

s
in)

sin = s(T s
in, P

s
in, X

s
in)

his
out = h(sin, P

s
out,Xout)

hout = hin + ηs
is · (hin − his

out)
Tout = T (hout, P

s
out, Xout)

Wout = ṁs
in · (hin − hout)

the incidence matrix becomes:
mout x

xout x

Hin x

Sin x

Houtis x xx

Hout x xx

Tout x xx

W x x x

Turbine example: sequential versus simultaneous approach

The main di�erence between the two resolution strategies is the fact that for the sequential resolution
it is necessary to de�ne a new resolution sequence when the operating mode changes. For the turbine
example, if the speci�cations are changed and the �owrate has to be calculated for a given mechanical
power, and an output pressure (Figure 3.5) a new resolution strategy has to de�ned, which involves a
reformulation of the model equations and of the resolution sequence.

W

min

s

.
,Tin

s , P in
s , Xin

s

mout
.

,Tout , Pout
s , Xout

η
is
s

Figure 3.5: Example: Turbine model - New calculation mode.

The modi�ed turbine model is given by:

xj
out = xj,s

in

hin = h(T s
in, P

s
in, X

s
in)

sin = s(T s
in, P

s
in, X

s
in)

his
out = h(sin, P

s
out, Xout)

hout = hin + ηs
is · (hin − his

out)
Tout = T (hout, P

s
out, Xout)

min = Ws

hin−hout

ṁout = ṁin

Another resolution method is to not change the resolution sequence and use an iterative loop for the
promotion of convergence (Figure 3.6): the model calculates the mechanical power and it changes the
value of the �owrate until the mechanical power is equal to the speci�ed value. This second approach
has the advantage of not having to rewrite the resolution sequence. However, it has the disadvantage of
an iterative loop which may be costly in terms of calculation time.
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Figure 3.6: Iterative loop.

For the simultaneous resolution, only the speci�cation equations have to be modi�ed and the models
equations remain unchanged. The di�erence also appears if one wants to make the model more accurate
by using empirical equations (Eq. 3.2) to calculate the e�ciency rather than considering it as constant.

ηis = a · τ + b · ṁin · ν̄ + c · (ṁin · ν̄)2 + d (3.2)

with:
τ compression ratio
ν̄ average volume (mass basis)
a, b, c, d characteristics of the studied unit

For the simultaneous strategy, the equations de�ning the e�ciency are added to the model equations with
in this case, the de�nition of additional internal variables (τ , ν̄). At the level of the speci�cations, the
speci�cation setting the isentropic e�ciency as a constant is replaced by the speci�cation of parameters
of the empirical expression.

The corresponding model is:

ṁout − ṁs
in = 0

xj
out − xj,s

in = 0
hin − h(T s

in, P
s
in,X

s
in) = 0

sin − s(T s
in, P

s
in, X

s
in) = 0

his
out − h(sin, P

s
out, Xout) = 0

τ · Pout − Pin = 0

ν̄ − ν(Ts
in,Ps

in,Xs
in)+ν(Tout,P

s
out,Xout)

2
= 0

ηis− a · τ + b · ṁin · ν̄ + c · (ṁin · ν̄)2 + d = 0
hout − hin + ηis · (hin − his

out) = 0
Tout − T (hout, P

s
out, Xout) = 0

W − ṁs
in · (hin − hout) = 0

with the speci�cations:
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ṁin − ṁs
in = 0

xj
in − xj,s

in = 0
Tin − T s

in = 0
Pin − P s

in = 0
Pout − P s

out = 0
a− as = 0
b− bs = 0
c− cs = 0
d− ds = 0

For the same model but with a sequential resolution approach, it is no more possible to �nd a resolution
strategy 1 variable / 1 equation. In fact, the calculation of the average mass volume requires the mass
volume of the output which can only be calculated if the outlet temperature, and therefore the isentropic
e�ciency, are known. It is thus necessary to introduce an iterative resolution loop.

A brief comparison of the two resolution approaches is given in Table 3.1.

Simultaneous Sequential
Problem statement incidence matrix DOF analysis required

implicit
Robustness unique solving scheme speci�c solving procedure

bounds, if-then-else
Calculation modes required numerical noise at �owsheet

level if iterative scheme

Table 3.1: Simultaneous versus sequential resolution approach.
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3.4 Unit models examples

Turbine and compressor

The unit model of the turbine or compressor simulates one stage of expansion (or compression). A multi-
stage turbine is therefore represented by a succession of stages of expansions and splitters to represent
the draw-o�s. The model of the expansion (or compression) stage is based on the isentropic expansion
(compression) equation Eq. 3.3 (Figure 3.7).

wnet
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System

boundary

Adiabatic turbine

T
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1

22s
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cd

Environment at To
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1
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Figure 3.7: Expansion model of a turbine and isentropic expansion.

W = ṁ · (hin − hout) (3.3)

hin − hout − η · (hin − hisout(Pin, hin, Pout)) = 0

with:
hin molar enthalpy at expansion stage inlet
hout molar enthalpy at expansion stage outlet
Pin pressure at expansion stage inlet
Pout pressure at expansion stage outlet
η isentropic e�ciency of expansion
his
out(Pin, hin, Pout) molar enthalpy from isentropic expansion between hin, Pin and Pout

This equation is written as function of the intensive variables (molar enthalpy and pressure). It can
therefore be evaluated even when the �owrate that passes through the turbine is zero. The e�ciency and
the compression ratio, as well as the expression of the volume �owrate limit can be expressed in terms of
other variables through characteristic curves. These curves allow to represent the behavior of a turbine
or compressor when the operating conditions vary. In the case where the unit does not exist (process
design), a constant isentropic e�ciency is chosen for each stage of expansion (average expansion ratio:
3) or a correlation based on market analysis is used [17]. The use of a correlation to set the e�ciency
must be treated with caution, it has to be ensured that operating conditions are similar. The choice of
the value depends on the type of turbine. Typical values can be found in [5].

Steam distribution (header)

In integrated energy systems, steam can be produced in di�erent boilers or turbines, and then be dis-
tributed to various users: turbine, processes, district heating network, etc. The steam distribution is
provided through a network of pipes that is maintained at a given pressure level. Each pressure network
is called header whose role is to collect and distribute steam. The header model assumes that the pressure
of all output streams is identical. Pressure losses in the pipes between two production or draw-o� points
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are neglected.

An important feature of an header is that the �owrate through portions of the pipes is unknown and
may be reversed depending on the value of the feed and draw-o�s �owrates. These are in fact de�ned by
optimization and according to the demands that have to be satis�ed. This is illustrated in Figure 3.8.
When the turbine is running, the two inlets of the header are mixed (point 3) to power the turbine. The
input 2 is a splitter. On the other hand, when the turbine is not running, the input 2 becomes a mixer
and the thermodynamic state of the draw-o� 1 can be totally di�erent.

Case 1:

Turbine running

Case 2:

Turbine not running

Figure 3.8: Steam header characteristics.

The model developed to simulate the header allows to calculate changes of the �ow direction of the
concerned �uid. The change of the �ow direction between two headers is also calculated. In this case, the
pressure drop that depends on the �owrate between two headers de�nes the pressure of the two headers
(Figure 3.9). The di�culty of modeling such a situation is that, despite the fact that the number of degrees
of freedom remains the same, the number of equations generated at each node (point of connection of a
�ow on the header) changes (Figure 3.10).

Figure 3.9: Direction change between two headers.

If the �ow of stream 2 (Figure 3.10) goes from left to right, the node is a splitter whose simulation
introduces the following 3 equations:
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Figure 3.10: Simulation of splitter or mixer.

1 Mass balance
f1 − f2 − f3 = 0

2 Model equations
h2 − h1 = 0
h3 − h1 = 0

On the other hand, if the �ow of stream 2 goes from right to left, the node is a mixer whose simulation
introduces the following 2 equations:

1 Mass balance
f1 + f2 − f3 = 0

1 Energy balance
f3 · h3 − f1 · h1 − f2 · h2 = 0

If during iteration, the �ows are such that the type of the node changes, the calculation can be solved by
a simultaneous approach, since the equation type and the variables involved in the equation change.

Figure 3.11: Modelling of a set of interconnected headers.

A system such as the one reported in Figure 3.11 is di�cult to manage by the two resolution approaches.
With the sequential approach, it is necessary to adjust the resolution sequence on the basis of the �owrates
and thus compute the nodes either in the form of a mixer or of a splitter. With a simultaneous approach,
it is necessary to choose a hybrid approach combining the simultaneous and the sequential approach.
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For the system reported in Figure 3.11 all the interconnected headers are considered as a set of units
with respect to the �owrates and pressures, and as a single unit to calculate the energy balance. The
following algorithm can be used:

� The energy balances being linear, they are satis�ed for each iteration, insofar as negative �owrates
are accepted.

� Determine the type of each node: splitter or mixer, for known �owrate.

� Determine a calculation sequence for the nodes that allows to calculate the enthalpy content of the
output streams of the system.

� Generate the model equations of the header from the calculated molar enthalpies (Eq. 3.4).

hc,i(fin,j , hin.j)− hout,i = 0 ∀i = 1, ..., nout (3.4)

with:
hc,i the molar enthalpy calculated for output i of the system

calculated on the basis of the �owrates and enthalpies of the inputs
fin,j the �owrate of the inlet stream j
hin,j the molar enthalpy of inlet stream j
hout,i the molar enthalpy of the output stream i (in the state variables list)

In this case, although the calculation order of the various nodes may change during iteration, the equations
de�nition remains identical. By this representation, discontinuities in the derivatives of the equations are
not deleted when switching from one type to another. However, in order to reduce the value of these
discontinuities, the derivatives of hc,i are calculated by numerical perturbation of fin,j and hin,j . It has
to be noted that the equations is again written as a function of the molar enthalpy, and the equations
can therefore be evaluated even when the �owrate is zero.

Heat exchanger

In industrial energy systems, heat exchangers often include phase change transformations: condenser and
evaporator of a heat pump, pre-heating heat exchangers by vapor condensation, condenser at condensing
turbine outlet, etc. The simulation model of the heat exchanger has therefore to take into account phase
changes. In this case, the conventional formula Eq. 3.5 resulting from the assumption of constant cp can
no longer be applied.

Q = U ·A ·∆Tlm (3.5)

with:
Q heat load
U mean heat transfer coe�cient
A exchange area of the exchanger
∆Tlm log mean temperature di�erence

between hot and cold streams

In the case of a phase change, the heat exchanger can be modeled by considering a succession of zones
(Figure 3.12) in which the cp of the two �uids can be considered constant and the formula Eq. 3.5 can
be applied. The sizing equation is highly non-linear and non-continuously di�erentiable Eq. 3.6.

Ai −
nzi∑
k=1

Qik
Uik ·∆Tlm,ik

(3.6)
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Figure 3.12: Heat exchanger representation: several zones in series.

with:
Ai surface of heat exchanger i
Qik thermal load of the zone k of heat exchanger i
Uik heat transfer coe�cient in the zone k
∆Tlm,ik log mean temperature di�erence

between hot and cold streams in zone k of the heat exchanger i
nzi number of zones de�ned by linear sections of the H_T diagram

of the hot and cold streams in heat exchanger i

Although it is relatively easy to implement this type of model in a sequential approach in which the
input and output variables are set, this formulation is much more complex in the case of a simultaneous
approach. The application of this formulation in a simultaneous approach requires many developments:

� Use of a smooth approximation technique as applied by [9] to attenuate the discontinuity of the
derivatives.

� Calculation of the boundary conditions (the residue and derivatives) in the case of degeneration of
the equation when the cp are equal.

� Iterative calculation of the residue when the surface is speci�ed; the enthalpy of the output stream
is calculated for the speci�ed surface and the equation Eq. 3.7 is generated. This approach is
more stable than the one using the residual from the equation, particularly because of the strong
non-linearity of equation Eq. 3.7, leading to temperatures crosses in the exchanger during iteration.
By calculating the molar enthalpy of the output stream, the heat exchanger is always calculated
for feasible conditions, which makes the problem easier to solve.

hcout − hout = 0 (3.7)

with:
hc
out molar enthalpy of the output stream

calculated iteratively based on the speci�ed area
hout molar enthalpy of the output stream

in the state variables list

� Calculation by linearization of extreme conditions: zero �owrate, temperature cross, etc. This
feature is very important because it is precisely in the extreme operating conditions that the op-
timization will pick the optimum. It is not acceptable that the numerical search of the optimum
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stops when a residual cannot be evaluated. If the situation has no physical signi�cance, one should
give a value to the residual and the path (which depends on the calculation of derivatives) to the
feasible domain.

In the heat exchanger model, pressure drop calculation relationships (depending on the �owrate and tem-
perature) and correlations for the calculation of heat transfer coe�cients have also to be added. It has
to be noted that in the case of the simulation of existing units, correlations can generally not reproduce
the measured performance. It is therefore necessary to consider an unknown parameter (representing
the fouling factor and the degree of crossed �ows) which will be identi�ed based on the performance test
measurements.

The simulation of condensers and evaporators is done by adding the condition of saturation of the output
stream. This constraint is computed by algorithms of the resolution method that introduces a linking
equation Eq. 3.8.

hout = hcalc(P, α, xi) (3.8)

with:
hout molar enthalpy at the outlet
P pressure at the outlet
α vapor fraction
xi molar fraction of compound i at the outlet
hcalc molar enthalpy calculated for �xed P and α

Valve

The valve is an adiabatic expansion. The pressure drop in the valve depends on the �owrate and is given
by the conventional equation for the pressure drop calculation.

Radiative exchange

The radiative exchange is calculated by the following formula Eq. 3.9. The pressure drop across the heat
exchanger is expressed as a function of the �owrate.

Q = GṠ · σ · (T 2
out,f · T 2

ad − T 4
p ) (3.9)

with:
Tout,f outlet temperature of the �ue gas
Tad adiabatic combustion temperature
G factor of geometry of the oven
S exchange surface
σ Stefan-Boltzmann's constant 5, 6697 · 10−8W/m2/K4

Tp average temperature of the reception area calculated by:

Tp = Tin−Tout
2

+ 70
Tin inlet temperature of the stream to be heated
Tout outlet temperature of the stream to be heated

Liquid-Vapor separator

The vapor-liquid separator model (Figure 3.13) separates the stream into two saturated streams, one
liquid and one vapor stream. The equations of the liquid-vapor separator model are:

Mass balance F · zi = L · xi + V · yi
Energy balance F ·Hf = V ·Hv(T, P, yi) + L ·Hl(T, P, xi) +Q
Liquid composition

∑
xi = 1

Vapor composition
∑

yi = 1
LV equilibrium yi = xi ·Ki(T, P, xi, yi)
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Figure 3.13: Liquid-Vapor separator.

Ki is the ratio of the molar concentrations of the substance i in the vapor and liquid phases that is
calculated to get for each substance the same fugacity in the vapor and liquid phase.

Combustion

In the combustion model, illustrated in Figure 3.14, a generic fuel formed of carbon (C), hydrogen (H) and
oxygen (O) (subscripts denote the atomic composition of the fuel) is burned with an oxidant containing
oxygen (O2), nitrogen (N2) and water (H2O).

Combustion

Oxidant
O2 , N2 , H2O

Fuel
Cx Hy Oz

Atomic balance: n atoms

Energy balance : 1
Pressure balance : 1

n
atoms

n e = -2

Variables (3 streams):
3(n+2)n v =

Figure 3.14: Combustion model.

Assuming complete combustion, the following equations are used to calculate the composition of the �ue
gas (N2, CO2, H2O and O2). The energy balance allows to calculate the adiabatic combustion tempera-
ture.

Complex unit model

A complex unit such as a boiler is calculated by connecting di�erent basic models (Figure 3.15).
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Figure 3.15: Scheme of a boiler.

The set of interconnected basic models is given in Figure 3.16. It has to be noted that superheating
is often performed in several super-heaters and that these may be calculated by radiative or convective
exchange depending on their location and the fumes temperature.

Figure 3.16: Simulation model of the boiler by assembly of unit models.

The set of equations of a gas turbine model are illustrated in Figure 3.17.
This model is considered in the global system of a combined cycle consisting of the gas turbine, the fuel
compressor, the recovery boiler, the steam turbine and the condensing unit (Figure 3.18).
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Figure 3.17: Gas turbine model.

Figure 3.18: Combined cycle model.
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Chapter 4

Model resolution: Sequential approach

To solve simulation problems a sequential approach is most commonly applied. The objective of this
chapter is to present the sequential modular method and to introduce a way to address the problem of
handling recycling loops (the Motard method).

4.1 Flowsheet resolution

There are mainly two resolution methods to solve models of integrated energy systems, namely the
modular sequential and the simultaneous approach. The main problem of a sequential approach is how
to deal with recycling. Additional information can be found in literature [23, 2].

4.2 Sequential modular method

The simulation of a system (i.e. set of equipments) is considered. It is assumed that a model (i.e. calcu-
late the state of the output if the input is known) is available for each process unit.

The static simulation of chemical systems systematically induces convergence problems. Consider the
very simple diagram of Figure 4.1 representing a small part of a chemical process. To be able to solve
the equations related to a unit, the unit input stream has to be known. However, if there are loops, all
the input streams are not known: to calculate the heat exchanger HE1, stream 1 and 2 must be known.
Stream 2 depends successively on streams 10, 8, 5 and 6, 4. Consequently, stream 4 and 6 are required
for stream 2. However, stream 4 is obtained by the resolution of the heat exchanger HE1. To solve this
problem, a tear has to be made, that is, one must estimate one of the streams and then calculate all the
units of the series and �nally use a method of convergence promotion in order to obtain a better estimate
of the quantities on the stream that is cut/teared. For example, if stream 2 is teared, the heat exchanger
HE1 can be calculated, then the reactor, the exchanger HE2, the separator and the splitter. Thus new
values are obtained for stream 2 and convergence has to be reached on stream 2 after iteration. If a more
complex system is considered, it is not obvious to directly determine the stream to be cut, in such a way
that the number of tears and the convergence problem are minimized.

4.2.1 The Motard method

A method for determining the minimum number of tears has been developed by Motard [2]. This method
is illustrated here based on an example. Figure 4.2 represents a system consisting of 6 units intercon-
nected directly or through recycling or by-pass. Each arrow represents a directed stream from a certain
size (matter, energy,...) that should be determined. For each unit, there is a model that can be solved
to compute the output stream based on the inputs. It is assumed that the system is in steady-state
conditions, meaning that there is no accumulation. If there is a chemical transformation (in a reactor for
example), it is necessary to introduce a virtual stream expressing the amount of product formed and the
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Reactor

Splitter

Figure 4.1: Example of a process with recycling.

amount of reagents consumed. This case will not be considered explicitly.

First, the notion of dual graph is introduced and some systematic rules, which allow to solve the system
by organizing the calculation sequence in an optimal manner, are presented.
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Figure 4.2: Dual graph of a system.

The dual graph

The dual graph is established from the system �owsheet. The big di�erence between these two types of
graphs lies at the level of the meanings of the branches and nodes. Branches (nodes) of the �owsheet
become the dual graph nodes (branches). Figure 4.3 shows the relationship between a �owsheet and a
dual graph.
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Figure 4.3: Flowsheet (left) and dual graph (right).

Rules of the Motard algorithm

A general rule is to:

Tear the stream occurring in the largest number of cycles

To �nd this stream in a systematic way, the dual graph representation of the �owsheet is considered and
the following rules have to be applied:

1. Remove the streams that have no predecessor.

2. Replace the streams that have only one predecessor by their predecessor.

3. Open loops by tears when a stream depends on itself (these are the loops on a single node). The
calculation of stream 1 involves an iterative calculation loop and so a tear.

1

4. Open loop by tearing when a stream predecessor depends on his predecessor (Tear parallel streams
with opposite direction).

1 2

5. Tear streams with the highest number of predecessors. If two loops involve a single node (i.e.
the same stream), this one should be teared. In fact, two loops are thereby cut by a single tear.

1 2 3

A teared stream has no predecessor. Guess the value and restart in point 1.

Remarks:

� The last rule is rarely applied, because the others are usually su�cient.
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� When a rule is applied, one has always to start from the 1st rule to continue.

These rules allow the decomposition of the �owsheet before the simulation. They allow to determine and
locate the minimum number of tears so that the calculation of the units can be sequential and iterative.

These rules are applied here to identify the tears for the system given in Figure 4.2. From the graph the
following Table 4.1 can be set.

Stream Stream predecessor
1 -
2 1, 5, 7
3 2, 4
4 3
5 3
6 3
7 6
8 6

Table 4.1: Motard algorithm: Streams' predecessors table.

According to rule 1, stream 1 is deleted because it has no predecessor. Hence, Table 4.1 becomes Table
4.2:

Stream Stream predecessor
2 5, 7
3 2, 4
4 3
5 3
6 3
7 6
8 6

Table 4.2: Motard algorithm: Streams' predecessors table (rule 1).

Applying rule 2, the streams 4, 5, 6 are replaced by their single predecessor (stream 3). Table 4.2 becomes
Table 4.3:

Stream Stream predecessor
2 3, 7
3 2, 3
4 3
5 3
6 3
7 3
8 3

Table 4.3: Motard algorithm: Streams' predecessors table (rule 2).

Applying rule 2 again, the stream 7 is replaced by its predecessor stream 3. As stream 2 has already
stream 3 as predecessor there is no need to write it twice. Table 4.3 becomes Table 4.4.
In the same way, stream 2 is replaced by its predecessor stream 3. As stream 3 exists already as a
predecessor of stream 2 there is no need to rewrite it. Hence the �nal table becomes Table 4.5.
It is obvious that it is not necessary to recopy the table every time. Generally, the successive corrections
are made to the �rst table (Table 4.1) (possibly in color) until obtaining this �nal Table 4.5. It can be
noticed that all streams have stream 3 as predecessor stream (except stream 1 which did not).
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Stream Stream predecessor
2 3
3 2, 3
4 3
5 3
6 3
7 3
8 3

Table 4.4: Motard algorithm: Streams' predecessors table (rule 2).

Stream Stream predecessor
2 3
3 3
4 3
5 3
6 3
7 3
8 3

Table 4.5: Motard algorithm : Final streams' predecessors table.

Now let's look at the application of the Motard rules through the dual graph. The �rst dual graph is
obtained from the �rst �ow table (Table 4.1). Attention: here the numbers represent the streams.

1 32 4

5 67 8

Figure 4.4: Initial dual graph for the system illustrated in Figure 4.2.

Applying the rules, the dual graph successively changes according to the Tables 4.2-4.5 as shown in Figure
4.5.

The last graph, as well as Table 4.5, show that all the streams have stream 3 as predecessor, even the
stream 3. Consequently, there is an own loop on the stream 3 and stream 3 has to be teared. All the
other streams disappear by applying rule 1 because if stream 3 is deleted, the others have no predecessor.
Then, the iterative process starts as illustrated in Figure 4.6.
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32 4

5 67 8

32 4

5 67 8

32 4

5 67 8

32 4

5 67 8

Figure 4.5: Evolution of the dual graph: Motard algorithm applied for the system illustrated in Figure
4.2.

Let's consider a single stream description variable (for example �ow rate) and give stream 3 a �rst value
a. The streams 4, 5 and 6 can then be calculated. Stream 7 (7=f6(6)) can then be calculated. At this
time, the streams 2 (2=f1(1, 5, 7)) and 3 (3=f2(2, 4)) can also be calculated. Note as a′ this new value
of stream 3. If a′ ̸= a, we start again the calculation with a′ or rather with a new a that is a function of
a′ (e.g.: a = a′, a′ is renamed a) until:
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Figure 4.6: Iterative process for the sequential resolution.

|a = a′| ≤ ϵ with ϵ �xed. After convergence the value of stream 3 is found and all the other streams
can be determined.

Remarks :

� A less cost-e�ective solution would be, for example, to tear streams 4, 5 and 7. A sequential
calculation would have been obtained, but there would have been a more complicate iterative
process.

� Obviously, the presented theory does not mean that one should not make �rst all possible elimina-
tions when they are easy to achieve.

Let's now process a more complex case for which the �owsheet and dual graph are given below (Figure
4.7). The Motard algorithm is applied in Table 4.6.
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Figure 4.7: Flowsheet and dual graph of a distillation process.

There is a loop to �nd the stream 4, accompanied by a convergence test, as well as a loop on the stream
12. It is a calculation where two loops of convergence are nested, a step forward to 12 can be made when
4 is converged. The calculation scheme is shown in Figure 4.8.

Stream 1 and 21 are inputs and streams 22, 6 and 7 outputs. It has to be noted that all the intermediate
calculations that are not necessary (streams 6, 19, 20, 22) are not performed each time but only when
convergence is reached. Stream 17 is calculated knowing the input stream 21. A vector a of input data
(T, P, partial molar �ow) is chosen for the stream 12, and stream 15 is calculated which gives streams 14
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Stream Stream predecessor
1 - - - -
2 1, 11 15 12 -
3 2 15 12 -
4 3, 9, 13 13, 15 12, 16 16 Tear 4
5 4, 14, 17 4, 14 4, 12 4
6 5 5 5 4
7 10 15 12 -
8 1, 11 15 12 -
9 10 15 12 -
10 8 15 12 -
11 15 15 12 -
12 3, 9, 13 13, 15 12, 16 Tear 12 -
13 16 16 16 16
14 15 15 12 -
15 12 12 12 -
16 4, 14, 17 4, 15 4, 12 4
17 21 - - -
18 2 15 12 -
19 5 5 5 4
20 18, 19 18, 19 18, 19 4
21 - - - -
22 20 20 20 4

Table 4.6: Motard algorithm table for complex distillation process.

{

{

21 17

4 
b 5

16

6

19

13

18

20 22

b'

4

a'

12a 
12 15

14

1

11

2

8

3

10 9

7

{
{

{{

Figure 4.8: Calculation scheme for complex distillation process.

and 11. Stream 11 and the input stream 1 provide streams 2 and 8, based on stream 2 stream 3 (and 18)
is found, while streams 10 then 9 (and 7) are found based on stream 8. For stream 4 a vector b is chosen
(17 and 14 being known). Based on stream 4, stream 16 (and 5) are calculated and then stream 13. Then
streams 9, 13 and 3 allow to calculate 4 = b′. Test on b′ = b, new values for b etc. until convergence of
the loop on stream 4. Stream 12 = a′ (from 13, 3, 9) is calculated; test on a′ − a, new values for a, etc.
until convergence of the loop on stream 12. Finally the streams 6, 18, 19 and 20 are calculated.
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Choice of tears. The application of the Motard rules allows to determine the minimum number of
tears that are necessary to solve the system. However, sometimes to reduce the computation time, it is
interesting to make one or two additional tears or move the location of the tear along a loop. Finally,
several types of tears/cuts are de�ned, according to the number of unknown variables:

� Total cuts (need to �nd n partial �owrates, T and P)

� Mass cuts (only the total �owrate is unknown)

� Thermal cuts (only the temperature is unknown)

To solve the system illustrated in Figure 4.9, a tear has to be added. Each stream can be represented
by a vector containing the state variables, the speci�cations, the quantities of matter: for example a
vector F containing: T, P, Ṁ , xi. Which stream has to be cut? If stream 2 is teared, the temperature,
composition and possibly the pressure are initially not known. Therefore, a total cut has to be made on
the stream to solve the system. However, between stream 1 and the input stream, the total �owrate and
the compositions do not change, and the pressure is de�ned by the pressure drop. The only parameter
that changes is the temperature. Consequently, it is su�cient to perform a thermal cut. This will facilitate
the calculation as an iteration over one single variable has to be done. This highlights the important
di�erence between total and partial cuts (compositions or temperature, etc.). Before making a cut, it
should therefore be systematically evaluated whether there is no way to perform a partial cut, which will
be always interesting from a calculation time prospective.

1

2

Figure 4.9: Example: mass and thernal cut.
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Chapter 5

Optimization methodology

In this chapter the various forms of an optimization problem (mathematical de�nition) are highlighted
and the di�erent strategies that can be adopted to solve the optimization problem are presented. The key
questions that are addressed are: What is an optimization method? How can models be used to state an
optimization problem? How is a solving strategy de�ned for an optimization algorithm? What are the
advantages and drawbacks of the di�erent solving strategies?

5.1 Mathematical de�nition of the optimization problem

The optimization problem consists in determining the optimal values of the decision variables allowing
to reach a given objective fobj(Xstate. The objective can be, for example the minimum operating costs.
The optimization problem is de�ned by the following generic form:

minfobj(XState)

with fobj(XState) Objective function
XState = {XFlows, XParameters, Ydecision} Variables

subject to F (XState) = 0 Model equations
S(XState) = 0 Speci�cation equations
G(XState) ≥ 0 Inequality constraints

The inequality constraints mathematically represent the acceptable limits of the considered variables.
They can be classi�ed into di�erent categories:

� Operating limits: these are de�ned in the equipment speci�cation sheets. For existing equipment,
operating limits can be contractual values that delimit the responsibility of the equipment manu-
facturer. These limits are part of the exploitation authorization.

� Regulations: environmental constraints or constraints with regard to the exploitation authorization.
For example, the emissions of certain pollutant are regulated and have to satisfy concentration and
quantity limits. In process design, these limits may represent either current conditions or future
conditions to be satis�ed by the new facility.

� Technology limits and heuristics: during the design of a new facility or the renovation of an existing
one, the operating limits (pressure, temperature, �owrate, power) of the new equipments are de�ned
to represent the characteristics of the equipments that are commercially available. These constraints
represent the limits of the materials or of the construction techniques.

� Numerical limits: when the model uses correlations to model the equipment or to compute the
objective function, it is necessary to incorporate the validity limits of these correlations in the
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optimization calculation in order to ensure the pertinence and accuracy of the solutions. The
numerical limits also represent the validity limits of the models, whether unit models or even
constraints regarding the system con�guration. For example, the inequality constraints prohibiting
the reversal of the �ow direction is introduced if this inversion is not explicitly foreseen in the
developed model. It is also important to consider the validity limits of the thermodynamic methods
used to evaluate the thermodynamic properties of �uids, indeed, if the validity range is not respected
some values may become inconsistent.

The inequality constraints can be divided into two categories:

1. Soft constraints that may be violated during the resolution. These constraints must be satis�ed
in the optimization procedure but their satisfaction or not has no impact on the calculation of the
model: e.g. emission limit, maximum �owrate,...

2. Hard constraints that cannot be violated during the calculations otherwise the numerical calculation
crashes. These constraints must be satis�ed in any assessment of the model and should be treated
appropriately to prevent failures in the iterative convergence procedure: e.g. �ow direction inversion.

The strategies for solving optimization problems can be classi�ed according to the level of integration
between the optimization method and the model resolution. The common strategies discussed in detail
hereafter are:

� Black box approach

� Simultaneous approach

� Two levels approach (hybrid approach)

5.1.1 Black-Box approach

In the black box approach the model and the optimization method are considered as two independent
entities (Figure 5.1). The optimization method sends a set of decision variables values to the model and
receives in return the value of the objective function(s) and the inequality constraints. It is therefore
assumed that the model includes a robust resolution procedure that is able to calculate the objective
function for any values of the decision variables.

Optimization: min fobj(Xdecision)

subject to Ginegality(Xdecision)≥0

Model

F(Xdependent, Xspecification, Xdecision) =0

S(Xdependent, Xspecification, Xdecision) =0

Xdecision

fobj

Ginegality

Status

Figure 5.1: Black box approach.
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Optimization method

The black box approach allows the use of almost all types of optimization algorithms. It is suitable both
for direct methods (without calculation of derivatives), indirect methods (with calculation of derivatives)
and heuristic methods (genetic algorithms, simulated annealing) or even graphic approaches. The method
becomes heavier when the optimization method requires the calculation of derivatives. For non-heuristic
methods, the optimum search is based on the assumption that the model is unimodal, i.e. there is only
one single value of the objective function for a given set of decision variables.

Advantages

The main advantage of this method is its simplicity and robustness. It is essentially based on the quality
of the model. It also allows to develop a model for which an e�cient, reliable and robust resolution
method has been developed.

The model may be discontinuous and contain conditional programming: if such conditions... then... ,
which is far more di�cult with the simultaneous method.

Each model calculation result corresponds to a feasible operating point and can therefore be used for
evaluation.

The number of variables considered by the resolution algorithm is the number of decision variables, which
may be relatively limited even in the case of calculation of large systems.

Disadvantages

The black box approach is based on the quality of the model and will have di�culties to solve problems
with inequality constraints. In the resolution procedure, checks have to be implemented and the status
of the calculation results has to be veri�ed. This allows the optimization algorithm to receive the infor-
mation if the values returned by the model are consistent and correspond to a signi�cant point.

This method is heavy in computation time, especially when iterative calculations are required to solve
the model.

The success and e�ectiveness of the method highly depends on the model robustness and its ability to
�nd a solution for each set of decision variables: when the model respond is that it has no solution, this
does not mean that the internal procedures have not found any solution but that there is actually no
solution. Time should be spent at the level of the model and its initialization when iterative procedures
are used.

The calculation of the inequality constraints is relatively di�cult. Only soft constraints can be treated
easily. Hard constraints can only be treated by including them at the level of the decision variables.
Which means that a prior knowledge of the optimum location with regard to these hard constraints is
needed and that the model and its resolution have to be programmed on the basis of the probable acti-
vation of these constraints.

The model is developed for the calculation of the chosen objective function. If the model is to be used
for another purpose, it has to be reprogrammed. This method is therefore not very convenient when the
developed model is to be used throughout the life of the installation where the same model has to be
used to optimize the design, then carry out performance monitoring and �nally optimize the operating
conditions according to the market demand. As all the decision variables vary from one case to another,
the model, if it is used in a black box approach, should be modi�ed accordingly.

The black box method is highly dependent on the accuracy of the model resolution algorithms since it is
based on the value of the objective function for a given set of variables.
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It should be noted that the choice of a black box approach has no real impact on the choice of the model
resolution method: the model of a black box approach can be solved by a simultaneous resolution.

5.1.2 Simultaneous approach

In the simultaneous approach, the optimization problem and the model are solved simultaneously (Figure
5.2). This implies the use of non-linear and constrained optimization algorithms that use most of the
time indirect methods based on the calculation of derivatives. In the simultaneous approach, the model
is not in charge of the resolution of the model equations. The model calculates the value of the modeling
and speci�cation equations (for given the state variables). While, it is the optimization algorithm that
is responsible for calculating the value of all the state variables in order that satisfy the modeling and
speci�cation equations, for checking the inequality constraints and for minimizing the objective function.

Xstate
fobj
F(Xstate)

S(Xstate)

G(Xstate)

Optimization

Figure 5.2: Simultaneous approach.

Optimization methods

In the case of a simultaneous approach, the optimization algorithms are constrained non-linear algorithms
which must be able to deal with large systems. For these methods, feasible and infeasible path methods
are distinguished, depending on whether they �rst seek to solve the system of equality equations and
then follow an optimization path to reach the optimum or whether they seek to simultaneously satisfy
the equality constraints and optimality conditions (see Optimization courses).

Advantages

The advantage of the simultaneous methods is the �exibility at the level of the problem de�nition: the
model de�nes a list of equations to solve and the optimization algorithm is in charge of the resolution.
It is therefore particularly well suited for e�cient resolution algorithm. Especially, when the model is
able to calculate the derivatives analytically. This approach is particularly appropriate if using software
developed for process modeling and optimization (gProms, GAMS and AMPL programming languages).
These software use a programming language speci�cally developed for the development of optimization
model and implicitly incorporate the calculation of derivatives and the use of advanced optimization
techniques.
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The computation time of the simultaneous method is signi�cantly reduced compared to the back box
method. This approach is thus interesting for on-line optimization systems, for which the previous solu-
tion will be used as starting point for the new calculation.

It is possible to easily use continuation methods to assist in the resolution of strongly non-linear problems.

Simultaneous approaches, being based on methods using derivatives, have as an advantage the possibility
to use all the information generated at the solution point, Lagrange multipliers, parameters' sensitivity,
..., the analysis of the incidence matrix verifying that the problem is well-posed.

Simultaneous approaches allow to easily change the problem formulation, without having to change the
model de�nition and to choose the list of dependent variables.

Disadvantages

The e�ectiveness of the simultaneous methods is strongly linked to the initial values of the state variables.
Therefore, a good initialization is required based on direction information from the derivatives values,
prior to the resolution strategy. If the prior initialization is well made, the resolution of the problem is
easy. The initialization is done before the optimization procedure in contrast to the black box approach
where a good initialization is required at each evaluation.

The simultaneous resolution procedure provides feasible points only at the end of the procedure. In the
case of non-convergence, the calculations are made not exploitable, while in the black box approach all
calculated points represent a system state.

Iterative procedures for the evaluation of equations are avoided as much as possible in the simultaneous
approach. Indeed, any iterative calculation causes a precision loss which a�ects not only the residues
value but also the value of the derivatives.

Simultaneous approaches cannot easily handle conditional simulation problems. Only the cases where
the condition does not determine the optimum position can be easily considered in a simultaneous op-
timization approach. When the optimal solution is conditioned by the decision, it will be necessary to
include integer variables and therefore to consider conditions, such as constraints, as part of the whole
optimization problem.

5.1.3 Two levels approach

The two levels approach has been developed to combine the advantages of the black box and simultaneous
approach. The principle of two levels or hybrid approach is to solve part of the model as a black box and
to charge the optimization algorithm with part of the speci�cation equations (Figure 5.3).

In the two levels approach, the resolution of a sub-system of the equations at the level of the model
aims to allow a fast and robust resolution that eliminates some of the variables (Xdependent) and part
of the equations of the overall problem. The resolution algorithm is in charge of solving the reduced
problem. This approach is similar to a reduced gradient approach, however, in this case, the reduction
is performed into the resolution strategy, while in the reduced gradient approach, it is the result of a
mathematical manipulation of the linear or quadratic approximation of the optimization problem.

The two level approach requires non-linear constrained optimization algorithms. Consequently, heuristic
optimization algorithms cannot be used.

This approach combines the advantages of both approaches, however it has also some disadvantages:
mainly at the level of the heavy programming and the derivatives calculation. For an e�cient hybrid
approach, derivative chaining (analytical calculation) has to be possible, which allows to calculate the
derivatives unit by unit by perturbation of only the relevant variables.
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Xdecision,
Xspecification

fobj
S(Xdecision, Xspecification)

G(Xdecision, Xspecification)Status

Optimization:

Figure 5.3: Two levels approach.

This approach is mainly used in cases where the resolution of the model needs iterative calculations and
the accuracy of the derivatives calculation is strongly dependent on the precision of the internal iterative
calculations. Remember that the calculation of the derivatives by perturbation is often done by a forward
calculation Eq. 5.1:

δf

δxi
=
f(X +∆xi)− f(X)

∆xi
(5.1)

For this calculation, the calculation precision of f(X) must be signi�cantly better than the value of the
perturbation f(X +∆xi) − f(X), so that the derivative measures the sensitivity of the function to the
variation of xi and not the noise associated with the lack of precision in the iterative procedure.

5.2 Model resolution

Whether it's in the black box approach or in the two levels approach, the techniques that can be used
to solve the model have to be studied. As explained in detail in Chapter 4, two methods can be applied:
the sequential modular approach and the equation solver (simultaneous) approach.

Most simulation software are based on modular sequential approaches. The process model is decomposed
into standard building blocks corresponding to the main types of unit operations. Simulation libraries
provide routines to model the behavior of these units based on the mass and energy balances and some
empirical equations. The units are resolved in a sequential manner by following the path of matter and
energy in the process: the outputs of the units are calculated from the inputs and the parameters. Recy-
cling and control loops are solved iteratively starting with values estimated for the teared stream (Section
4.2). Mathematical blocks are used to solve the tearing equations (with the possibility of some additional
equations) by matching the values estimated with the results obtained by looping through the sequence
of units. Because derivatives are seldom available, the promotion of convergence is generally based on
substitution or on improvements based on the largest eigenvalue or the Wegstein extrapolation. Methods
similar to the Newton method, trying to iteratively build approximations of the Jacobian matrix (or �rst
derivatives matrix), such as the Broyden method, have also been used successfully.

In the case of the simultaneous approach called equation solver, all the equations and variables are pro-
cessed simultaneously by a resolution algorithm that solves the overall system.

Many studies compared the two approaches; both have advantages and disadvantages. It should be noted
that the sequential approach was longtime preferred due to the computing power of computers that could
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not solve large size problems with a simultaneous approach. Today this constraint does not exist anymore
which explains the proliferation of the simultaneous methods. The current trend is the development of
hybrid methods to take advantage of the advantages of the two approaches.

A lot of research has been done to determine the most appropriate approach to solve the simulation
problems and optimization of energy systems. Kontopoulos et al. [13] came to the conclusions that the
choice depends on the type of problem. The results of the comparative study are summarized in Table
5.1.

Sequential / black box Simultaneous
Problem statement * ***
Recycling * ****
Pressure handling * ****
Initialization **** *
Debugging **** **
Rigorous models **** *
Conditional simulation *** *
Flexibility * ****
On-line optimization * ****
Optimization ** ****
Robustness **** **
Total ** ***

Table 5.1: Comparison between sequential (black box) and simultaneous resolution approaches: *Not
satisfactory, ** Satisfactory, *** Good, **** Very good.

Remarks:

� For the simultaneous approach, the problem statement does not require the de�nition of the se-
quence. The algorithm for the degrees of freedom identi�cation helps to de�ne the speci�cations.

� In many simulation and optimization problems of energy systems, refrigeration cycles or vapor
cycles, the pressures are determined counter-current to other variables: the pressure is set at the
condenser outlet and de�nes the pressure of previous devices through the pressure loss. This is
di�cult to treat in a sequential approach because the inlet pressure has to be estimated in such a
way that the pressure losses will not lead to impossible calculations (ex: negative pressure).

� A good initial value of all variables is necessary for the simultaneous approach, while for the sequen-
tial approach, only the value of the variables of the tears must be well estimated. This disadvantage
of the simultaneous approach is moderated when the model is used in a global method. In this case,
one of the preliminary operations is the validation of the measurements, which provides a value of
all variables in the simulation and optimization. This operation, however, shifts the initialization
problem to the validation tool, which also uses a simultaneous approach. Flowsheeting software
often have an interactive mode that allows to perform a priori initialization of the units by an
approximate sequential calculation.

� Identifying the cause of a non-convergence is more di�cult in a simultaneous approach than in a
sequential approach. In a sequential approach, the non-convergence is associated with the resolution
of a particular unit. The analysis of the sequence and of the values allows to understand more easily
the cause of the problem. In the simultaneous approach, all the equations and variables are processed
simultaneously. In this case it is not easy to identify the cause of the non-convergence. However,
it is possible to take advantage of the information of the resolution to identify the convergence
problems. It is important to be able to distinguish the true convergence problems related to the
di�culties encountered by the resolution software from the convergence problems resulting from
the fact that the problem is impossible and that there is no solution having a physical meaning.
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� The use of a rigorous simulation model can be di�cult in the simultaneous approach because of the
presence of discontinuities of equations or derivatives. Moreover, the simultaneous approach cannot
easily handle conditional calculations.

� The simultaneous approach is very e�ective and robust when an initial point is found. In a few
iterations a new point is obtained by changing the value of a speci�cation or of a set-point. The
sequential approach is penalized with a heavier calculation of derivatives which penalizes the calcu-
lation time. However, both approaches are robust to calculate a new operation point from a known
solution.

� Simultaneous methods are particularly well suited to address optimization problems especially when
it is necessary to satisfy inequality constraints. With a suitable choice of the state variables,
the inequalities will be expressed in the form of linear equations that are always satis�ed during
the resolution. This avoids to calculate units in impossible conditions (e.g. negative �ows). In
the sequential approach, the inequality constraints appear in the form of a non-linear inequality
equations that will require a special treatment to avoid convergence problems. The treatment of
the inequalities is highly dependent on the robustness of the resolution software.

� The calculation of recycling involves iterative computations (Motard method to identify tears (sec-
tion 4.2.1) ). Loops have not to be forgotten because there is no convergence criteria in the case of
an implicit resolution: by calculating several times the model a simple substitution is done. However
no convergence criterion is applied which certi�es that the substitution has led to a stabilization of
the solution. In this case, there is a signi�cant risk to consider a system as a converged, while in
reality it is not (some energy and mass balances might not be satis�ed!). This cannot happen with
the simultaneous approach since the resolution of the tear equation (loop) is part of the equation
system to be solved.

The availability of the derivatives is another asset of the simultaneous approach for the calculation of the
optimization or for the exploitation of the results. In the simultaneous approach the calculation of the
Jacobian matrix is the essential information to solve the problem because it de�nes the search direction.
The Jacobian A is the matrix of the derivatives of the equations system for which ij element is de�ned
by Eq. 5.2

Aij(x
k) =

δFi(x
k)

δxj
(5.2)

with:
F (x) modeling and speci�cation equations
Aij(x

k) element ij of the matrix A at the point xk

δFi(x
k)

δxj
value of the partial derivative of function Fi

with respect to the variable xj at the to the point xk

Two aspects have to be considered:

� In general, the size and the sparsity of this matrix are very important. In the case of a steam
network, the average is 4 non-zero elements per line. So it is mportant to use a sparse matrix to
store the Jacobian.

� The derivatives can be calculated analytically based on the equation formulation. However, when
the form of the equations is not known or is too complex (e.g. in the case of conditional simulation),
the derivatives are calculated numerically by a �nite-di�erence or a central di�erence approach.

Aij(x
k) =

δFi(x
k)

δxj
=
Fi(x

k +∆xkj )− Fi(x
k)

∆xkj
(5.3)

where Fi(x
k +∆xkj ) is the value of equation i for which a single variable j among the variables Xk

at the iteration k has been perturbated by the small value +∆xkj
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The numerical calculation of derivatives is costly in computation time since it is necessary to systemati-
cally calculate the equations for each variable of the problem. It is obvious that �owsheeting software try
to perform the analytical calculation when possible, and when the numerical calculation is required, they
try to do it in a smart way and avoid unnecessary calculations. In the case of the modeling of energy
systems, the calculation of the derivatives of thermodynamic functions is often done numerically due to
the discontinuities in the enthalpy-temperature function. Indeed, at the level of the discontinuity, the
derivative has two values, the choice of the correct value depends actually on the direction/path that is
chosen based on the value of the derivative to perform the iteration step.

5.3 The AGE procedure to simulate and optimize energy systems

The AGE procedure (analyze, generate, evaluate) represents a generic three-step methodology that is
applied during a modeling and optimization study.

The �rst step, analyze, consists in the problem statement: choose and assemble unit models and then
analyze the degrees of freedom of the system to determine the speci�cation equations and set-points (or
command variables).

The second step, generate, corresponds to the resolution of the equation system. This implies initializing
the variables and solving the non-linear equation system.

The third step, evaluate, consistent in drawing a solution from the numeric result in solution. The
consistency of the numerical results provided by the model are checked and the numerical values are
compared with the reality and the good engineering sense. Once the model is approved, it can be used
to support decision making. The evaluate step is also used to determine the cause of the failure in the
case where the solution has not been found. In fact, the cause may be attributed either to the resolution
algorithm that has not found the solution, or to the set of speci�cations that is inconsistent (unfeasible
system).

5.3.1 Analyze: degrees of freedom identi�cation

In the analysis step, the degree of freedom is de�ned after having selected the unit model and deter-
mined the interconnections. This consists in de�ning the set of speci�cation and set-point equations
(S(XState) = 0 and C(XState) = 0). The degree of freedom is de�ned by analyzing the structure of the
incidence matrix (see previous Chapters). The principle of the algorithm is to place an item on each
diagonal position of the matrix by exchanging rows and columns [8, 7].

In the case of simulation problems, the algorithm is applied to choose the speci�cations. If such a per-
mutation exists, then a pivoting sequence exists for the matrix inversion, which allows to say that the
problem is structurally well-de�ned. When such a permutation cannot be found, it means that several
variables (i.e. columns) collide to occupy the diagonal position of a line. In this case, the problem is
underspeci�ed. The addition of an extra line (i.e. speci�cation), which will assign one of the columns
which con�icted, will allow the algorithm to continue. For a given line (i.e. equation), the list of variables
that are in con�ict for the diagonal place de�nes the list of items among which one variable has to be
speci�ed. Similarly, the application of the algorithm of the matrix inversion allows to identify the over-
speci�cations (i.e. excess equations). Surplus equations that are in con�ict for one variable and which
belong to the set S(XState) de�ne a subset of speci�cations in which one should be deleted.

Applied to the incidence matrix of the problem, this algorithm allows to de�ne a square matrix (m+s=n)
in which it is possible to permute the rows and columns in such a way that there is a non-zero on each
diagonal position. With regard to the inversion of the Jacobian matrix this means that there is at least
one sequence of pivots, but this does not guarantee that the value of the pivot is non-zero. If a pivot
becomes zero during the factorization, the problem is numerically singular.
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The algorithm does not guarantee that a solution will be obtained. Because of the non-linearity of the
mathematical model, it is not su�cient to give a value to the speci�cations to �nd a solution. The set
of speci�cations has to be consistent so that the equations can be solved simultaneously and that at the
solution the variables XState are in the validity range of the model.

In the case of an optimization problem, the degrees of freedom analysis stage will only deal with the
over-speci�cations search.

5.3.2 Generate: optimization problem resolution

The generate step of the procedure consists in solving the model and/or the optimization problem.
Various algorithms can be used to generate a numeric result as discussed in the previous chapters. For
the simultaneous approach the initialization of the variables is necessary to de�ne a good starting point
for the iterative procedure and the derivatives calculation. In the case of the simulation of an existing
installation, the data reconciliation gives a good starting point for the simulation calculation.

5.3.3 Evaluate: results

Once the simulation or optimization results are generated, the third step of the procedure is: to evaluate.
Therefore, the simulation tool plays a very important role because it can test the solution obtained with
other speci�cations, to test, for example, the feasibility or the �exibility of the calculated utility and heat
exchange network.

The simultaneous approach is advantageous because it is possible to change the speci�cations without
changing the calculation sequence. Moreover this approach is particularly well suited to calculate alterna-
tives based on a known solution. The analysis of the solution by the generation of the sensitivity matrix
is another bene�t of the simultaneous resolution of the equation system. The objective is to calculate the
variation of the variables to a change of the speci�cation values [16].

Suppose that the solution of simulation has been obtained by solving the system: F (X) = 0. The
considered system has �xed integer variables. In the vicinity of the solution, the �rst order development
by the Taylor formula is:

F ∗(X) = F0 +A(X0) · (X −X0)

with:
F ∗(X) the vector of the linearized equations
F0 the vector de�ned by the equations at the linearization point F0 = F (X0)
X0 the vector of variables at the linearization point
A(X0) the Jacobian matrix of the system at point X0

When X0 de�nes the solution of the system, F0 = 0 and the function F ∗(X) is given by:

F ∗(X) = A(X∗) · (X −X∗)

with X∗ being the vector X such that F (X∗) = 0.

As the vector F(X) comprises the modeling, speci�cation and set-point equations, the linearized system
can be divided into three parts:

F ∗(X)
S∗(X)
C∗(X)

 =

AF (X∗)
AS(X

∗)
AC(X

∗)

 · (X −X∗) = 0
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with:
AF (X

∗) Jacobian matrix (rectangular) of the modeling equations at the solution X∗

AS(X
∗) Jacobian matrix of the speci�cation equations

AC(X
∗) Jacobian matrix of the set-point equations

In this system, the modeling equations F ∗(X) have to be equal to zero. With a suitable choice of vari-
ables, AS(X

∗) is a rectangular unitary matrix: a single non-zero item equal to 1 per line. AS(X
∗) is thus

independent of the values of X and can be noted AS . The following reasoning is applied to the set-points:
AC(X

∗) will be constant AC .

The speci�cation si(X) is written:

si(X) = xj − xSj = 0

with:
si(X) the speci�cation equation i corresponding to the speci�cation of the variable j
xj the variable to which relates the speci�cation j
xS
j the value of the speci�cation of the variable j

At the solution, the value taken by xj is equal to x
S
j . A perturbation dsj of the speci�cation is written

as:

si(X) = xj − (xSj + dsj) = 0

For the linearized system this yields:

s∗i (X) = xj − (x∗j ) = dsj

and S∗(X) = As(X −X∗) = Ei · dsj
(5.4)

with Ei the vector in which only element i is 1. ETi represents line i of the matrix AS .

The linearized system becomes:

F ∗(X)
S∗(X)
C∗(X)

 =

AF (X∗)
AS
AC

 · (X −X∗) = dsj

 0
Ei
0


The resolution of this linear system gives the new value of the variables X to a perturbation dsj of the
speci�cation value of the variable j. The sensitivity of the variables to the speci�cation of the variable j
is obtained by solving the system:

AF (X∗)
AS
AC

 · dX
dsj

=

 0
Ei
0


with:

dX
dsj

the vector of the variables sensitivities to the speci�cation of the variable j

dX = (X −X∗) the response to the perturbation dsj

The solution of this system is obtained by factorization of the matrix
(AF (X∗)

AS

AC

)
:
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dX

dsj
=

AF (X∗)
AS
AC

−1

·

 0
Ei
0


The matrix of the variables sensitivities with regard to the speci�cations is calculated by:

dX

dS
=

AF (X∗)
AS
AC

−1

·

 0
ATS
0


with dX

dS the matrix of the sensitivities with regard to the speci�cations whose element i, j de�nes the
sensitivity of the variable i to the speci�cation j.

The matrix of the variables sensitivities with regard to the set-points is given by:

dX

dC
=

AF (X∗)
AS
AC

−1

·

 0
0
ATC


with dX

dC the matrix of the sensitivities with regard to the set-points whose element i, j de�nes the sensi-
tivity of the variable i to the set-point j.

The calculation of these matrices requires no additional factorization. It is an additional information that
directly available through the use of the simultaneous approach.

The use of the sensitivities matrices can be applied to heat exchange networks results [15]. The sensitivity
calculation is also used to calculate the decoupling between manipulated and controlled variables. When
the set-point is the value of the controlled variable, the system of equations describes the utilities network
as a transformer which calculates the manipulated variables as a function of the set-point variables
(Figure 5.4). The calculation of the sensitivity matrix gives the in�uence of the controlled variables on
the manipulated variables.

Modelc i m j

Figure 5.4: Controlled variables - manipulated variables: Transformer.

When the a set-point value in�uences more than one manipulated variable, there is a risk of coupling
which has to be taken into account in the control strategy. Without using dynamic programming including
regulators, a static study allows to quantify the coupling. By replacing in the equations system, the set of
set-point equations on the controlled variables C(X) by a set of speci�cation equations on the manipulated
variablesM(X), the model becomes an operator calculating the controlled variables (outputs) on the basis
of manipulated variables (inputs) Figure 5.5.

Modelmi c j

Figure 5.5: Controlled variables - manipulated variables: Operator.

The set of the manipulated variables M(X) is de�ned by:
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M(X) = AM (X −X∗) = 0

where AM is the matrix of the manipulated variables whose lines have only a single element with the
value of 1 de�ning the corresponding manipulated variable.

M(X) replaces C(X) when the matrix
(AF (X∗)

AS

AM

)
can be inverted.

The calculation of the sensitivities matrix with respect to the manipulated variables provides the sensi-
tivity of the controlled variables with respect to the manipulated variable mj , the other manipulated
variables being kept constant. The system operates in open loop. Element i, j of the matrix (M) is
de�ned by:

mij =

(
dci
dmj

)
mk ̸= j

with
(
dci
dmj

)
mk ̸= j the sensitivity of the controlled variable ci with respect to the manipulated variable

mj , the other manipulated variables being kept constant.

The relative gain array (RGA) (here named matrix L) described by [4] allows to measure interactions in
the process and give recommendations for the pairing of the manipulated and controlled variables. This
operation allows to de�ne the control loops of the control system (Figure 5.6) and the decoupling that
has to be done between di�erent loops.

Modelc i m j

Figure 5.6: Control system.

The element ij of the relative gains array is given by:

lij =

(
dci
dmj

)
mk ̸= j(

dci
dmj

)
ck ̸= j

where
(
dci
dmj

)
ck ̸= j is the sensitivity of the controlled variable ci with respect to the manipulated vari-

able mj the other controlled variables being kept constant: closed-loop.

By linear algebra, the elements of this matrix can be calculated on the basis of the matrix M by multiplying
terms by term the matrix M and the inverse of the transposed matrix (M−1)T . The characteristic of the
matrix L is that the sum of the elements of the rows and of the columns is equal to 1. The allocation of
a manipulated variable (column) to a controlled variable (line) is achieved by choosing, for each row, the
column that has the largest element in absolute value. If the value is 1, then there is no coupling between
this couple and the others; if the value is close to 1, then the coupling is low; if the value is high, there
is a coupling which should be taken into account to develop a control strategy (decoupling).
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5.4 MINLP problems: optimization of superstructures

In process design problems the resolution algorithm has to make the choice of type yes/no. For example:
choose whether or not a unit is in the superstructure. In this case, it is necessary to add to the model
integer variables that represent the use or not of a unit or a �ow. These variables, denoted Y, represent
decisions of yes/no type:

yi = 1 the decision i is YES

yi = 0 the decision i is NO

The problem becomes a mixed integer non-linear problem called MINLP (Mixed Integer Non Linear
Programming). Before studying the various de�nitions that the optimization problem can take, the way
the integer variables are considered is �rst presented, as well as the algorithm that can be used to solve
this problem.

Speci�cation or set-point equations with integer variables

This type of expression is used to mathematically represent the following situation: the turbine j must
produce the power requested by the shaft; otherwise the mechanical power will be provided by an electric
motor connected to the same shaft. Note Wmec,j the power produced by the turbine j, Pmec,j the power
requested at the turbine j, yj the integer variable associated with the turbine j. If yj = 1 the turbine
is operating and if yj = 0 it does not. In this case, Pmec,j will be produced by the electric motor. The
speci�cation equation of the power becomes:

Wmec,j − Pmec,j · yj = 0

if yj = 1, Wmec,j = Pmec,j
if yj = 0, Wmec,j = 0

All the speci�cations of extensive variables are treated in the same way and take the following form:

xi − xsi · yi = 0

with:
xi the extensive variable i
xsi the value of the speci�cation of variable i
yi the integer variable related variable i

The value of yi can be �xed if the speci�cation is not a yes/no decision.

The set of speci�cation and set-point equations is thus divided into two parts:
S1(X) = 0 speci�cations of the intensive variables
S2(X,Y ) = 0 speci�cations of the extensive variables

The intensive variables are not subject to the same constraints: they do not depend directly on the yes/no
decision, only through the balances and the modeling equations. The use of integer variables provides an
additional argument in the choice of intensive rather than extensive variables to describe the state of the
system. If the total enthalpy is used instead of the molar enthalpy to describe the enthalpy content of a
stream and if the integer variable associated with the �ow is zero, then the �owrate will be zero as well
as the total enthalpy. The temperature can no longer be calculated and all the modeling equations that
involve this temperature can not be assessed.
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5.4.1 Inequality constraints with integer variables

Consider the example of a heat exchanger of the heat exchanger network. If the heat exchanger is used in
the optimal structure (yi = 1), the exchange area must be between a minimum and maximum; however,
if the exchanger is not used (yi = 0), its surface must be zero:

If the heat exchanger i is chosen: yi = 1 and Amin,i ≤ Ai ≤ Amax,i

If the heat exchanger i is not used yi = 0 and Ai = 0

with Amin,i the minimum surface allowed for the heat exchanger i
Amax,i the maximum surface allowed for the heat exchanger i
Ai the surface of the heat exchanger i
yi the integer variable related to the use of the exchanger i

Mathematically, this is expressed by:

Amin,i · yi ≤ Ai ≤ Amax,i · yi

In the same way as for the speci�cations, the inequalities with integer variables relate only to the exten-
sive variables. The set of inequalities G1 is divided into two subsets:

G3(X,Y ) ≥= 0 de�nes the bounds on the extensive variables
G4(X) ≥= 0 de�nes the bounds on the intensive variables

Linking equations between integer variables

To maintain the consistency of the problem, the unit models will introduce linking equations between the
integer variables, as illustrated for the unit models in Figure 5.7.

Figure 5.7: Integer variables de�nition for mixer, splitter, steam header.

Mixer. The mixer introduces the following equations:

∑nin

i=1
yin,i − yo ≥ 0

yo − yin,i ≥ 0 ∀i = 1, ..., nin

with:
yin,i integer variable associated with the input stream i
yo integer variable associated with the output stream
nin number of input streams

If yo = 0, all the yin,i will be canceled by the �rst equation. On the other hand, if at least one yin,i = 1,
yo must be equal to 1 to satisfy the second equation. If all the yin,i are zero, yo = 0 veri�es the �rst
equation.
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Splitter. For the splitter the equations are the following:

yin − yo,i ≥ 0 ∀i = 1, ..., nout∑nout

i=1
yo,i − yin ≥ 0

with:
yin integer variable associated with the input stream
yo,i integer variable associated with the output stream i
nnout number of output streams

If yin = 0, yo,i = 0 according to the �rst equation. If one yo,i=1, then yin = 1 satis�es the �rst equation.
If all the yo,i are zero then yin = 0 according to the second equation.

Header. In terms of integer variables, the header is considered as a mixer followed by a splitter. The
generated equations are the combination of the two previous models:

yh − yo,i ≥ 0 ∀i = 1, ..., nout∑nout

i=1
yo,i − yh ≥ 0∑nin

i=1
yin,i − yh ≥ 0

yh − yin,i ≥ 0 ∀i = 1, ..., nin

with:
yin,i integer variable associated with the input stream i
yh integer variable associated with the header
yo,i integer variable associated with the output stream i
nin number of input streams of the header
nout number of output streams of the header

All these equations are introduced as a set of additional inequality equations de�ned by: G5(Y ) ≥ 0. This
set of equations may seem super�uous since the integer variables relate to �owrates for which the integer
variable is already de�ned by an inequality equation fmin,iyi ≤ fi ≤ fmax,iyi. They are nevertheless
introduced to avoid an inde�niteness in the case where the value of fmin,i is 0.
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Chapter 6

Thermo-economy

One of the main applications of the modeling of energy systems is the thermo-economic or thermo-
environomic optimization. The basis of the formulation of a thermo-economic/environomic objective
function will be introduced here.

6.1 Problem statement

The challenge of an integrated energy system is to transform primary energy (fuel resources) into useful
energy in the form of heat or electricity (which will be sold) (Figure 6.1). In this perspective, companies
invest in a set of technologies that will allow to maximize the pro�t. In most cases, the generated electricity
will be injected in the network, while the heat will be used directly on-site by a process unit or delivered
to a district heating network. The pro�t will be de�ned as the di�erence between the income from the
sale of transformed energy (i.e. heat and electricity) and the expenses for fuel purchase, operation and
labor, and installation depreciation.

Energy resources
- Different properties
- Costs (market)
- Emissions (regulations)
- Availability

Technologies
- Performance
- Material
- Emissions
- Availability
- Know-how Turbines

Boilers

Heat exchangers

Reactors

Compressors

Conversion technologies

Emissions
Losses

Useful energy

ElectricityHeatFuels
Natural gas
Coal, biomass
Waste
Crude oil

Solar
Other industries

Figure 6.1: Integrated energy system.

The goal of an integrated energy system is to increase the e�ciency (thermo), to decrease the costs
(economic), to respect the environmental constraints and to decrease the environmental impact (environ-
mental). As these objectives are in competition and there is a large diversity of technologies available on
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the market, there is no unique solution to this problem and consequently the engineer will be faced with
a thermo-economic/environomic optimization problem.

6.1.1 De�nitions

The di�erent terms of the notion 'Thermo-environomic' illustrated in Figure 6.2 are explained here.

Thermo-

Energy
Exergy

Environ-

Emissions
GWP

Economy
Investment
Operating cost

dynamics

mental

Thermo-environomic

Figure 6.2: De�ntion: Thermo-environomic.

Thermo

The system will be modeled by the thermodynamic phenomena taking place in the di�erent process units,
mainly the transformation of matter and energy. The model will calculate the performance of the studied
system on the basis of the technical characteristics of the equipment.

Economic

The model will be used to calculate the performance of the installation which will be expressed by
the economic performance. In the thermo-economic optimization, the trade-o� between the operating
costs resulting from the thermodynamic performance of the process and the investments to achieve these
performance (purchase of equipment) will be assessed.

Environomic

In the environomic approach, the model will in addition evaluate the environmental performance of the
system. The environmental performance can be de�ned by the emissions from the process itself, the use of
raw materials, the waste treatment, or the production of the equipment. The environmental performance
will be expressed in an economic form (for example CO2 tax) to include the environmental impact of the
energy system in the economic performance.

6.2 Thermo-economic performance of a process

The goal of a thermo-economic evaluation is to estimate, on the basis of the thermodynamic values
calculated by the process model, the investment and its pro�tability. The performance is represented
by the trade-o� between the generated pro�ts and the total investment costs over the lifetime of the
installation.
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Example: Purchase of a heat exchanger to save energy. The initial situation is illustrated in Figure
6.3.

HP vapor: 0.02CHF/kWh

160C

150C

160C cond

100C
6kW/C

water: 0.001CHF/kWh

25C

70C

35C

175C
3kW/CReaction

Figure 6.3: Initial process layout.

To achieve energy savings, a heat exchanger is purchased to exchange heat between the stream at the
reactor inlet and the output stream (Figure 6.4).

100C 175CReaction
I1 I1’

150C

I2 O1

O1’

O2

H

C

Investment
- Heat exchanger
- Connexions/pipes
- Control

Expected benefit
- Energy savings
- Reduction of

- cooling water consumption (C)
- vapor consumption (H)

Energy recovery

T [C]

Q [kW]

DTmin

175C

150C

100C

120C

O1

I2

I1’

I1

O1’

O2

70C

70C

Cold
utility

Hot utility

Heat exchanger
optimal operation ?

Figure 6.4: Energy saving by heat exchange.

To evaluate the investment pro�tability, the following elements have to be assessed:

� Heat exchanger purchase cost

� Installation price

� Foundation

� Connections (pipes)

� Control

� Funding opportunities

� Calculate the cost/bene�t of the heat exchanger operation
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� Energy purchase (typically lower than the case without heat exchangers)

� Maintenance

To evaluate the bene�t of an energy saving project it is necessary to evaluate the compromise between
the investment and the savings. Several di�culties have to be faced:

1. The investment has to be estimated with a relatively simple method. Therefore the purchase costs
of the equipment, the cost associated with the installation of the equipment in the process (including
the costs of foundation, connections, engineering, labor for installation, additional taxes, etc.) and
the cost related to the equipment operation (for example the connection of measuring apparatus,
control, safety procedures, etc...)

2. The calculation of the annual pro�ts that will be achieved. Therefore the energy costs, the main-
tenance costs and the additional labor costs have to be accounted for.

3. Time scale: the investment made at the beginning of the project induces pro�ts for a �xed period.
Therefore, the money of today has to be compared with the future pro�ts.

6.2.1 Estimation of the investment

Di�erent investment estimation levels are distinguished depending on the required precision and the in-
vestment project maturity. The estimation of the investment costs money, the more precise the estimation
the more costly it is, as shown in Figure 6.5.

Figure 6.5: Investment estimation [21].

68



CHAPTER 6. THERMO-ECONOMY

1. The �rst level corresponds to the estimation of the order of magnitude of the investment. It mainly
concerns the processes or the global system. The estimation is often carried out on the basis of the
production level and is obtained by comparison with an equivalent existing installation. The rule
of the 6/10 is often applied.

2. The second level will be the one that is applied for energy audits and process improvement studies.
Based on a PFD (Process Flow Diagram), this type of estimation requires the calculation of the
size of each equipment. This level of assessment will be used to compare alternatives and identify
the most promising ones.

3. The third level will be the preliminary evaluation carried out to select the best alternatives. At this
level, a good investment estimation has to be done to request a budget to fund the project. At this
stage a price o�er will be requested for the major equipments.

4. The fourth level corresponds to the �nal assessment requiring a detailed calculation of the changes:
dimensions of all equipment, calculation of the piping cost, costs of safety measures, taxes, etc. ...

5. Last level: detailed estimation to guide and control the project implementation. The detailed
estimate is often performed by the responsible project engineers or the one who contracted the
project.

For the thermo-economic optimization, a rough estimation of the investment is normally made since in
the majority of cases, the list of technologies that must be used is not yet known.

If only little information is available, the investment (i.e. the purchase cost) Cp can be evaluated by
equation Eq.6.1 estimating the investment on the basis of the investment of a similar facility Cp,ref
considering a scale factor of 0.6. A is the equipment attribute, for example the area for an heat exchanger.

Cp
Cp,ref

=

(
A

Aref

)0.6

(6.1)

With regard to the equipment purchase, the �rst step will be the de�nition of the operating conditions,
the choice of the most suitable type, the calculation of the equipment size and the choice of the ap-
propriate material. It should be noted that these choices are not independent from one another. More
information can be found in [22, 21, 1, 18].

The cost estimation methods result from statistical analysis of market studies. The methods are based on
the manufacturing cost of standard equipments that are then corrected to take into account the operating
conditions (e.g. temperature and pressure in�uence). In addition to the equipment purchase cost, the
costs of the equipment installation have to be added to get the installed cost (ready to start). The
installed cost di�ers from the purchase cost by a factor of 3-4. The installed cost includes:

� Additional materials required for installation

� Foundations and piping costs

� Labor and engineering work

� Cost for the integration with other equipments

� Equipments and adaptation of control and security systems

� Taxes and royalties

� Purchase of land
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To evaluate the installed cost on the basis of the purchase cost a global factor F (known as Lang factor
or bare module factor) can be applied to the total cost of purchase of the equipment (Eq. 6.2). The
factor depends on the plant type (i.e material that is processed, operating pressure).

Ci = F ·
∑ne

i=1
Cp,i (6.2)

with:
Cp,i Purchase cost of equipment i
ne Number of equipments
Ci Installed cost
F Lang factor

F=4.74 liquid processing
F=3.1 solid processing
F=3.63 solid-liquid processing

The estimate of the installed cost can be expressed in a canonical way. The e�ect of the pressure and
material can be expressed by Eq. 6.3. For heat exchangers, for example, the installed cost can be
evaluated by Eq. 6.4 including the e�ect of pressure, material choice and reference index. The values of
the various parameters of this equation are taken from [21] (Figure 6.6).

F = B1,i +B2,i · FM,i · FP,i (6.3)

Ci = Cp,i · (B1,i +B2,i · FM,i · FP,i) ·
It

It,ref
(6.4)

with:
Cp,i Heat exchanger purchase cost

Cp,i = 10K1,i+K2,ilogAi+K3,i(logAi)
2

Kj empirical constants from cost database
Bj empirical constants computed from cost database
FP,i Pressure factor

FP,i = 10C1,i+C2,ilogP̄i+C3,i(logP̄i)
2

Cj empirical constants computed from cost database
P̄ pressure di�erence from atmospheric pressure

FM,i Material factor
It Cost index for actual year
It,ref Cost index for reference year

The cost indexes are used to calculate the current value of the investment compared to the date on
which the investment estimation or the correlation has been established. The values of the index can
be obtained in journals such as Chemical Engineering [6]. Two indexes that are commonly used are the
Marshall & Swift Index and the CEPCI Index (Chemical Engineering Process Cost Index). Details about
the CEPCI can be found in http://www.che.com/Assets/File/CEPCI_1_01-2002.pdf. The variation
of the indexes along the years and the variation of the CEPCI along the years 2008/2009 are illustrated
in Figure 6.7.

6.2.2 Investment annualization

To make an economic evaluation, the investment has to annualized. The annualization is necessary to
compare the investment made today and the annual income (savings) expected over the lifetime of the
installation.

Considering a period of n years and an interest rate i, the future value of the investment I∗ (at the end
of n years) can be estimated by Eq. 6.5.

I∗ = I · (1 + i)n (6.5)
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Figure 6.6: Parameters for estimating the installed cost of an heat exchanger [21].

Assuming that the same operation is performed for an annual income B (constant at the end of each
year), the value of this constant entry at the end of the same period can be calculated. This corresponds
to a sum of incomes, each bearing interest over the number of years minus one. This sum is a geometric
progression de�ned by the analytical expression Eq. 6.6 where B∗ is the annual income B after n years
with an discount rate i (interest rate).

B∗ =
n∑
r=1

B · (1 + i)r−1 = B
(1 + i)n − 1

i
(6.6)

By combining Eq. 6.5 & 6.6, the present value V ∗ of an annual constant income B for n years with an
interest rate i is given by Eq. 6.7.

V ∗ =

(
1

(1 + i)n

)
·
(
B
(1 + i)n − 1

i

)
= B · (1 + i)n − 1

i · (1 + i)n
(6.7)

Based on this formula 6.7, the actual total cost Ctot corresponding to the sum of the investment made
today and the operating costs over the lifetime of the equipment can be evaluated by Eq. 6.8. The annual
expenditure of an investment I can then be compared with the money invested today Eq. 6.9

Ctot = I + C · (1 + i)n − 1

i · (1 + i)n
(6.8)

IC[CHF/year] = I · i · (1 + i)n

(1 + i)n − 1
(6.9)

with
I initial investment
C operating cost
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Figure 6.7: Variation of the indexes Marshall & Swift and CEPCI over the years [6].

The evolution of the annualization factor with regard to the lifetime n and the interest rate i is given in
the Figure 6.8. This factor represents the equivalent lifetime if the in�ation and the expected pro�t are
accounted. It is therefore expressed in years.

6.2.3 Total cost and pro�t

The pro�t of a project corresponds to the di�erence between the total operating cost of the installation
and the total cost after the completion of a project producing an income B over a period of n years
with an investment of I. In this case, the initial investment before the project is zero and the pro�t over
the duration of the project is expressed in discounted francs (CHF). To calculate the annual pro�t, the
investment has to be annualized (Eq. 6.10).

Profit = Ctot,o − Ctot =

[
Io + Co ·

(1 + i)n − 1

i · (1 + i)n

]
−
[
(Io +∆I) + (Co −B) · (1 + i)n − 1

i · (1 + i)n

]
(6.10)

with
Io initial investment before the project (Io=0)
Co initial operating cost before the project
B income from operating cost of the project
∆I investment of the project

Di�erent criteria can be used to assess the pro�tability of a project. The pay-back time (Eq. 6.11)
does not allow to compare projects with investments of di�erent sizes. The discounted bene�ts (Eq.6.12)
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Figure 6.8: Variation of the annualization factor with regard to the interest rate and the lifetime.

and annual bene�ts (Eq.6.13) must also be compared with the investment. These criteria should be
considered as elements of decision: go - no go. The discount rate (i.e annualization rate) i∗ of the project
(Eq.6.14) represents the pro�tability of the investment, it corresponds to the interest rate that balances
the initial investment. It is therefore a good indicator of pro�tability. This value is unfortunately di�cult
to assess and require a graphic or iterative calculation. This value will be then compared to the average
rate which is used either by the company that makes the investment or with the average rate for other
investments in the same domain. The investment is somehow put into competition.

Pay-back time [years] =
∆I

B
(6.11)

Discounted bene�t [CHF] = B ·
[
(1 + i)n − 1

i · (1 + i)n

]
−∆I ≥ 0 (6.12)

Discounted annual bene�t [CHF/y] = B −
[
∆I · i · (1 + i)n

(1 + i)n − 1

]
≥ 0 (6.13)

i∗such as : B ·
[
(1 + i)n − 1

i · (1 + i)n

]
−∆I = 0 (6.14)

Analysis of the interest rate de�nition used in the annualization formula

The proposed analysis highly depends on the value that will be adopted for the interest rate i. This value
is arbitrary but based on a few elements related to the economic context of the project. The interest or
discount rate should re�ect in�ation, to ensure that the future value is well above the value of money in
the future. It must be compared with the interest rate which could be obtained by placing the money in a
bank. Investment is initially not a philanthropic operation, the investor therefore has the choice between
placing the money in a bank or in a company. The interest rate therefore needs to be higher than the
one given by a bank. The value that will be chosen in a company generally results from an analysis of
previous investments. It should be noted that economic evaluation of projects allows to compare projects
that may have fundamentally di�erent objectives but which can be put in competition at the level of the
availability of money in the company.

Typical values are: Lifetime: n = 15 years and Interest rate i = 8-9%.
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6.3 Thermo-economic cost function

Generally a thermo-economic cost function will include terms related to the investment (CAPEX), the
operating costs and the maintenance costs (OPEX). The annual total costs are expressed by Eq. 6.15.
This formula is the result of an integral and re�ects the cost in an annualized form. It represents the
dynamics of the system and how it responds second-by-second to changes in the environment. It also
allows to take into account investments which would be spread over the lifetime of the project. If it
can be assumed that the investment is recorded at the time of the commissioning of the installation
and that operation is stationary, the formula Eq. 6.15 simpli�es and it is possible to de�ne the thermo-
economic formulation in terms of annual cost (CHF/year). For practical reasons, this formulation can
also be adapted to take into account changes by considering the annual operation of the installation as
a succession of stationary states. For example, when evaluating a heating system which depends on the
ambient temperature. For a continuous process the formulation is given by Eq. 6.18.

Ctot =

∫ t=ni

0

τi(t) · CO(t) · dt+
ne∑
i=1

Ii(t) (6.15)

with
t = 1y integral over one year
τit annualisation rate
CO(t) operating cost at time t [CHF/s] (Eq. 6.16
i interest rate
ni lifetime of equipment i
ne number of equipments
Ii investment of equipment i

CO(t) =

nin∑
i=1

ṁi(t) · P pi (t) +
nout∑
j=1

ṁj(t) · P sj (t) + Ėin(t) · ce,in(t)

− Ėout(t) · ce,out(t) +M(t) +MP (t) (6.16)

with
nin number of resources (fuels, feedstocks) purchased
ṁi(t) �owrate of resource i at time t [kg/s]
P p
i (t) purchase cost of resource i at time t [CHF/kg]

nout number of products (fuels, feedstocks) sold
ṁj(t) �owrate of product j at time t [kg/s]
P s
j (t) sales price of product j at time t [CHF/kg]

negative if emission which is taxed or waste to be treated

Ėin(t) electricity input at time t [kW]
ce,in(t) electricity purchase cost at time t [CHF/kWh]

Ėout(t) electricity output at time t [kW]
ce,out(t) electricity selling price for exportation to grid at time t [CHF/kWh]
M(t) annual maintenance cost at time t [CHF/s]
MP(t) man power cost at time t [CHF/s]

Ctot[CHF/y] = CO · nh +
ne∑
i=1

1

τi
Ii (6.17)

Ctot[CHF/y] = OPEX +
1

τ
CAPEX (6.18)
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with
1
τi

annualisation rate
i(1+i)ni

(1+i)ni −1

nh annual operating time [h/y] (8000-8760h/y continuous operation)
CO operating cost [CHF/h] (Eq. 6.19
OPEX yearly operating cost [CHF/y]
i interest rate
ni lifetime of equipment i
ne number of equipments
Ii investment of equipment i
CAPEX total investment cost

CO =

nin∑
i=1

ṁi · P pi +

nout∑
j=1

ṁj · P sj + Ėin · ce,in − Ėout · ce,out

+ M +MP (6.19)

with
nin number of resources (fuels, feedstocks) purchased
ṁi �owrate of resource i [kg/h]
P p
i purchase cost of resource i [CHF/kg]

nout number of products (fuels, feedstocks) sold
ṁj �owrate of product j [kg/h]
P s
j sales price of product j [CHF/kg]

negative if emission which is taxed or waste to be treated

Ėin electricity input [kW]
ce,in electricity purchase cost [CHF/kWh]

Ėout electricity output [kW]
ce,out electricity selling price for exportation to grid [CHF/kWh]
M annual maintenance cost [CHF/y]
MP man power cost [CHF/y]
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Pollutant Tax Avoidance cost Damage repair cost Reference

CO2 12-60 159-227 51-1310 Switzerland
NOx 8800 - 13800-32270 Sweden

Table 6.1: Example of cost of emissions (in CHF/tonne).

6.4 Environomic cost function

The objective of the environomic cost formulation is to add in the economic objective function terms
that allow to take into account the environmental impact of the facility. It is possible to use di�erent
formulations with regard to the amount of pollutants emitted by the installation. The �rst approach is to
consider the di�erent pollutants emitted by the facility and associate it with a speci�c cost. This approach
is based on the principle of a tax that is proportional to the amount emitted. The environmental cost
term CE or ENV EX is given by Eq. 6.20 taking into account all sources of emissions and discharges
from the installation. The objective function becomes Eq. 6.21.

CE =

nout∑
j=1

ṁj ·

np
j ollutants∑
i=1

xi,j · Ti

 (6.20)

with
nout number of emissions types
ṁj �owrate of emission j

npollutants
j number of pollutants in stream j

xi,j fraction of pollutant i in stream j
Ti tax for pollutant i [CHF/kg]

Ctot[CHF/y] = CO · nh + CE · nh +
ne∑
i=1

1

τi
Ii(t) (6.21)

The de�nition of the value Ti is of course di�cult. One can consider that this factor represents the
price that allows to restore the initial state of the environment in which the facility is located. Di�erent
approaches may be proposed, the simplest is the one that is based on the values of applicable taxes. For
example, in Switzerland a CO2 tax of 15CHF/tCO2 was introduced in 2008, the tax was increased to
36CHF/tCO2 in 2010 and is foreseen to increase to 60CHF/tCO2 in 2014 and to around 100-120CHF/tCO2

in 2020 (Confédération Suisse 2012 www.bafu.admin.ch). These values have to be compared with an-
other approach that would use the avoidance cost or the estimated cost of repair of the damage created
by the pollutant (Table 6.1).

To be accurate this approach should be extended to include the impact of the production of raw materials,
the production of equipment and the use of products generated by the process. This is done in the life
cycle assessment LCA method that is standardized in ISO 14040 &14044 [11, 12]. LCA consists of four
main steps: the goal and scope de�nition, the life cycle inventory (LCI), the impact assessment LCIA
and the interpretation. It is important to note that for this evaluation average statistical values will be
combined with values obtained from the model. Therefore, one should ensure that the orders of magnitude
allow to represent the impacts on which it is possible to act by changing the design of the installation
[10]. In this case, the environomic contribution can be expressed by Eq. 6.22 and the objective function
will be Eq. 6.23.
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CE = nh ·

nout∑
j=1

ṁj ·

np
j ollutants∑
i=1

xi,j · Ti

+

nin∑
r=1

ṁr ·

np
rollutants∑
i=1

x∗i,r · Ti


+

1

na

neq∑
e=1

Se ·

(npollutants∑
i=1

x+i,e · Ti

)
(6.22)

Ctot[CHF/y] = CO · nh + CE +

ne∑
i=1

1

τi
Ii(t) (6.23)

with
nh annual operating time [h/y]
nout number of emissions types
ṁj �owrate of emission j
ṁr �owrate of resource r

npollutants
j number of pollutants in outlet stream j

npollutants
r number of pollutants in inlet stream r

xi,j fraction of pollutant i in stream j
x∗
i,r emission of pollutant i per unit of resource r [kg/kg]

na lifetime of installation
Se size of equipment e
ne number of equipments
x∗
i,e emission of pollutant i for the equipment e per unit of size

Ti tax for pollutant i [CHF/kg]

In order to take into account the geographical location, one has to consider the fact that the pollutant
emitted at a given location can have a di�erent impact when it is issued to another location. In a heavily
polluted environment, an additional issue for example can lead to unacceptable pollution levels and should
in this case lead to a much greater cost. This can be expressed by Eq. 6.25. This inequality constraint
will limit emissions both in terms of quantities and in terms of concentrations. These values are in this
case included within the limits to obtain permits to operate the facility.

nh ·
nout∑
j=1

ṁj · xi,j ≤ qmaxi ∀i = 1, ..., npollutants (6.24)

xi,j ≤ xmaxi,j ∀i = 1, ..., npollutants∀j = 1, ..., nout (6.25)
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Data reconciliation

This chapter introduces the concept of data reconciliation and validation of an industrial process. The
major topics that are addressed are: how to calibrate models (use all the information available while
respecting the fundamental equations of thermodynamics), place measurements, virtual sensors by process
models, correct the values of the measurements (data reconciliation), identify parameters, etc.

7.1 Introduction

The process data are the basis on which rely any control and any assessment of its performance. The data
reliability is very important when they are intended for the process monitoring (control, identi�cation,
...). Therefore,consistent data is needed to accurately represent the process and correctly identify the
parameters prior to the simulation, optimization or the revamping of a large factory.

The data validation or reconciliation is a very important task that turns the available data in a coherent
set de�ning the state of the process. Today, computers are used to ensure the control of processes. Thus,
there is a large number of data, gathered and stored, which can be systematically validated using an ad
hoc program increasing the data accuracy and ensuring their coherence.

7.1.1 Sources of measurement errors

Process measures are never consistent. The main reasons are:

� There are disturbances due to the instability of the process even if the control system is very
e�ective. Certain conditions (such as weather) cannot be controlled.

� Measurement devices are not always reliable. Instrumental biases may not be compensated ade-
quately; measuring devices may be defective.

� The readings of the measures and manipulations (laboratory testing) can introduce errors.

� The experimental point can be in�uenced by undesirable elements and the measure does not corre-
spond to the expected variable (bad position of a thermocouple, in�uence of the �ow distribution
in a heat exchanger, e�ect of a condensate in a vapor stream, dirt on a measuring device).

� Accidents may change the expected balances of a process (losses, bursting of a heat exchanger, heat
loss,...).

7.1.2 De�nition of a process state

To set the state of an industrial facility, many measures of variables describing the system such as tem-
perature, pressure, �owrate, composition, etc., have to be made. When the number of measures is less
than a given threshold (called number of speci�cations), it is not possible to de�ne the state of the system
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(see previous Chapters). Eventually, the state of a subsystem can be de�ned. As far as these measures
are selected carefully and that their number equals the number of speci�cations, the mass and energy
balances can be used to calculate the other variables of the system. In such circumstances, a systematic
measurement error, even if minimal, can bias, sometimes dramatically, the calculations of the other vari-
ables of the system (i.e. introduce great errors). As a result, additional measurements have to be made
to increase the con�dence level of the system. It is then no longer possible to satisfy all the equations of
the system, and consequently a technique for analyzing the measurements has to be applied.

The data reconciliation method developed in the BELSIM software, helps to solve this huge problem. To
validate the data, the process, the measurements and the standard deviations estimates (errors) a�ecting
each measurement are stored in a database.

Illustration

As an example, the mixing of two stream containing a pure substance is considered (Figure 7.1). The
temperature and pressure of the inlet streams are di�erent. The number of speci�cations necessary to
explicitly de�ne the state of the system is DOF=7.

T1, P1, F1

T2, P2, F2

T3, P3, F3

Temperature (T): 3Variables:
Pressure (P) : 3
Flowrate (F) : 3

9
Equations: Mass balance : 1

Energy balance : 1
2

DOF: 9-2 =7

Figure 7.1: Illustrative example

If less than 7 measurements are made, it is not possible to completely determine the state of the system.

� 1st case: 6 variables are measured: P1, P2, P3, T1, T2, F3. In this case, it is not possible to know
more about the system.

� 2nd case: 6 variables are measured: P1, P2, P3, T1, F2, F3. The �owrate F1 can be calcu-
lated through the mass balance. A subsystem (F1) of non-measured variables is calculable. The
temperatures T2 and T3 cannot be assessed.

� 3rd case: 7 variables are measured: P1, P2, P3, T1, T2, T3, F1. The values are T1=300 K,
T2=410 K, T3=310 K, P1=P2=P3=1 bar, F1=10 kg/s. Based on the mass and energy balance
two non-measured variables: F2 and F3 can be calculated. The system is now completely known,
but a systematic error in the measurement of temperature T3 can bias the knowledge of the system.
Assuming a constant cp, the �owrates of F2 and F3 are at T3=310 K, F2=1 kg/s and F3=11kg/s
and at T3=305 K, F2=0.48 kg/s and F3=10.48 kg/s, respectively. A systematic error of 5 degrees
on the measurement of T3 will give a very bad evaluation of F2.

For analyzing the speci�cation and measurement sets, the DOF has to be de�ned and the following
questions have to be addressed:

� Are there enough speci�cations? If no, where do the missing speci�cations have to be placed? If
yes, what are the extra speci�cations?

� Are there enough measurements ? Can the model be solved? Are additional measurements needed?
What to do if more measurements are available?

7.2 Theory

This chapter gives a brief overview of the theoretical bases of the validation, explaining the techniques
and the formalism used (variables, constraints, linking equation, how to analyze the incidence matrices
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and the resolution method. More details about the problem statement and resolution are found in the
previous Chapters.

7.2.1 De�nitions

State variables

The state variables are the variables involved in the equations, mainly mass and energy balances, associ-
ated with the physical units of the process. The state variables that are commonly used (also in BELSIM)
are:

� T: the temperature of the mixture, if the material stream is involved in a heat balance. NOTE:
The temperature variable is advantageously replaced by the molar enthalpy H variable for biphasic
�ow of a single substance, since the enthalpy uniquely de�nes the thermodynamic state.

� P: the pressure of the mixture, if it plays a role in heat balance. Very often it is not possible to
validate measurements of pressure and these are considered constants.

� Ci (i=1, number of substances): partial molar �owrate of the substance i in the mixture.

� Uj (j=1, number of reactions): extent of the reaction j.

� FRA: split fraction, for example for a splitter, the variable is used when a stream is divided into
several other streams with the same composition (0<FRA<1).

All other variables (enthalpy, mole fraction, etc.) can be deduced from the state variables (as far as
thermodynamic methods describing the mixture are de�ned). The state of the system is known once the
values of the state variables are known for each stream of the system.

Example: The �owsheet shown in Figure 7.2 is composed of 4 physical units and of 9 streams. The
list of state variables is given in Table 7.1; to specify the conversion of CH4, the state variable of the
reactor U1 is added.

F4.2F4.1F3

F5.1 F5.2

F2

F1

F4.4

F4.3

MELANGEUR REACTEUR ECHANGEUR 

DE CHALEUR

DIVISEUR

A1

A2

A3 A4

A5

FLUX

ARBRES FIGURE 2

CH4+2O2

CO2+2H2O

Figure 7.2: Example considered for data reconciliation.

Stream Variables Tree Variables
F1 T, P A1 O2, N2

F2 T, P A2 CH4, N2

F3 T, P A3 O2, N2,CH4

F4.1 T, P A4 O2, N2,CH4, CO2, H2O
F4.2 T, P
F4.3 T, P, FRA
F4.4 T, P, FRA
F5.1 H, P A5 H2O
F5.2 H, P

Table 7.1: State variables of the example reported in Figure 7.2. The partial molar �owrates associated
to a material stream are called tree.
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Measured or observed variables

These variables are those that are measured in the plant. To each measurement corresponds an estimate
of the standard deviation of the measurement error, and each measurement is considered to be a system
variable. Some of these variables are already included in the system state variables; others, called linking
variables, are related to the state variables by speci�c equations: the conversion equations or the linking
equations. This is for example the case of the total molar �ow FMOL, which is connected to the partial
molar �ow by the equation: FMOL =

∑
k Ck or, the mole fraction FMk of the substance k given by:

FMk ·
∑
i Ci = Ck.

Constraint equations

The constraints equations are: the mass and energy balance, the linking equations, but also special
equations (liquid-vapor equilibrium equations, equations of equal pressures or temperatures, etc.).

Example: The mixer in Figure 7.2 has two input streams, whose temperatures are TF1 and TF2. The
variables O2A1 and O2A2 are the partial molar �owrates of the �rst input stream (tree A1). The variables
N2A2 and CH4A2 represent the partial molar �owrate of the second input stream (tree A2). The �rst
output stream is characterized by temperature TF3 and the partial molar �owrate O2A3, N2A3 and
CH4A3. The pressures are constant. Three material balances have to be written:

O2A1 −O2A3 = 0 for the substance O2

N2A1 +N2A2 −N2A3 = 0 for the substance N2

CH4A2 − CH4A3 = 0 for the substance CH4

The energy balance is expressed by the enthalpy equation:

h(TF1, O2A1, N2A1) + h(TF2, N2A2, CH4A2)− h(TF3, O2A3, N2A3, CH4A3) = 0

The following linking equation has to be written if the mole fraction of the O2 substance is measured in
the output stream.

FMO2A3 · (O2A3 +N2A3 + CH4A3)−O2A3 = 0

Therefore, the state variables of the problem are: F1, F2, TF3, O2A1, N2A1, N2A2, CH4A2, O2A3, N2A3, CH4A3

while FMO2A3 is a linking variable.

7.2.2 Problem statement

The data reconciliation is based on the following assumption. All measurements are a�ected by errors
and corrected or validated values di�er from the measured values. On the one hand, the validated values
must satisfy the constraint equations, and, on the other hand, they have to minimize the sum of squares
of the di�erences between the validated values and the measured values. These di�erences are weighted
by the corresponding standard deviations. From a mathematical point of view, this is a constrained
minimization problem, which is de�ned as follows.

Are:

y , the vector of measured values (size MES);

Y, the vector of the corrected or validated values;

X, the vector of the not measured values which have to be calculated (size NMES) ;
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F(X,Y), the vectorial function of the balance equations (size NEQ) ;

P , weighting matrix which allows to quantify the relative accuracy of the measurements MES. In
practice, it is a diagonal matrix whose elements are the inverse of the variance σi of the measurement i.

The minimization problem is de�ned by Eq. 7.1:

MES∑
i=1

(Yi − yi)
2

σ2
i

with the constraint F (X,Y ) = 0 (7.1)

In matrix notation this becomes Eq. 7.2:

MX,Y (Y − y)TP (Y − y) with F (X,Y ) = 0 (7.2)

This constrained minimization problem is solved by the Lagrangian method involving 'Lagrange multi-
pliers' for each equation, expressed by Eq. 7.3 (the factor 2 is introduced for the sake of convenience, as
we will see later):

MX,Y,λL with L = (Y − y)TP (Y − y) + 2λF (X,Y ) (7.3)

The resolution of the Euler equations gives the solution of the problem. The Euler equations are written:

δL

δYi
= 0 i = 1,MES

δL

δXi
= 0 i = 1, NMES

δL

δλi
= 0 i = 1, NEQ

The Jacobian matrices of the measured variables and non-measured variables are:

Aij = δFi

δYj
and Bij = δFi

δXj

The following equations system is obtained:

(Y − y)TP + λTA = 0 MES equations

λTB NMES equations

F (X,Y ) = 0 NEQ equations

Which is a system of MES+NMES+NEQ non-linear equations with MES+NMES+NEQ unknowns. A
necessary step for all resolution methods is to assess the total Jacobian matrix of this system of equations
written as (if one neglects the dependence of A and B with respect to Y and X):

P 0 AT MES lines
J= 0 0 BT NMES lines

A B 0 NEQ lines
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Variables Measurements Standard deviation
Y1 O2A1 1 0.01
Y2 N2A1 2 0.01
Y3 N2A2 3 0.01
Y4 CH4A2 4 0.01
Y5 FMO2A3 0.2 0.01
X1 O2A3 - -
X2 N2A3 - -
X3 CH4A3 - -

Table 7.2: Measured values and the corresponding standard deviations for the example reported in Figure
7.2.

Example: Consider the validation of �owrate measurement around the mixer of Figure 7.2. The mea-
sured values and the corresponding standard deviations are given in Table 7.2.

The data reconciliation problem becomes:

MINX,Y

[
(Y 1−1)2

0.012 + (Y 2−2)2

0.012 + (Y 3−3)2

0.012 + (Y 4−4)2

0.012 + (Y 5−0.2)2

0.012

]
with the constraints:

Y 1−X1 = 0

Y 2 + Y 3−X2 = 0

Y 4−X3 = 0

Y 5 · (X1 +X2 +X3)−X1 = 0

and

A =


1 0 0 0 0
0 1 1 0 0
0 0 01 0
0 0 0 0

∑
Xi

 B =


−1 0 0
0 −1 0
0 0 −1
Y 5 Y 5 Y 5


7.2.3 Existence of a solution

On the basis of the constraint equations it can be noted that:

1. The system accepts an in�nite number of solutions if the number of non-measured variables is
greater than the number constraint equations (NMES>NEQ). In this particular case the matrix
B is rectangular and horizontal (more columns than rows) and the Jacobian matrix is singular,
since lines MES+1 to MES+NMES are always linearly dependent. The system is not soluble.

2. If the number of non-measured variables equals the number of constraint equations (NMES=NEQ),
the solution of the problem is obtained by considering the measurements as constants and by cal-
culating the non-measured variables using the constraint equations. The system is just computable
because there are not enough equations to correct the measurements. The matrix B is square.

3. If the number of non-measured variables is smaller than the number of constraint equations (NMES<NEQ),
the system has a unique solution. The constraint equations are not only used to calculate the
non-measured variables, but also to reconcile the measurements. The matrix B is rectangular
vertical (more rows than columns).
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To �nd a solution, the matrix B should not be rectangular horizontal. In fact, the Jacobian matrix should
not be singular, what happens for example,

� If the constraint equations are linearly dependent.

� If the measurements are poorly distributed and certain parts of the process remain undetermined.

� If variables that are put constant are not well-chosen and create an over speci�cation.

In most of the cases, a careful analysis of the systems incidence matrix allows to detect these problems
prior to the resolution. The incidence matrix is the matrix whose elements ij are 1 if the variable j occurs
in the equation i, otherwise 0.

Example. The incidence matrix of the measured and non-measured variables of the mixer (Figure 7.2
and Table 7.2) is:

AB =


1 0 0 0 0 1 0 0
0 1 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1


Caution: Although this analysis is satisfactory, the equations system, the starting points and the measured
values can be such that the program fails to converge to a solution or the solution is located outside the
eligible area (de�ned by physical ranges of variables: temperatures and positive �ows,...), or that the
system become locally singular during the iteration. This type of problem is explained in more detail in
the chapter dealing with the convergence problems.

7.2.4 Incidence matrix analysis

Validity of the constraint equations

The analysis of a system of equations by the means of its incidence matrix is tricky. Indeed, two identical
equations will appear as two equations involving the same variables and not as an error. Similarly, a
subset of linearly dependent equations cannot be pointed out in an incidence matrix. The chances of
encountering such singularities are mostly eliminated if the equations are automatically generated by the
software. The veri�cation of certain conditions eliminates the generation of errors in the equations. For
example, each stream cannot be connected to more than two physical units; it is necessary to have at
least one input stream and one output stream.

Are there enough measurements?

After generation of the measurements and the linking equations, the variables are divided into three
categories:

� Variables speci�ed as constants (called also constants)

� Measured variables

� Not measured variables

To determine if the measures allow, at least, to determine the state of the system, the incidence matrix
'equations-not measured variables' corresponding to the matrix B is analyzed. The approach consists in
permuting the rows and columns in such a way to get a subsystem S2 containing a sub-matrix B2' and a
horizontal sub-matrix B2" (Figure 7.3). The sub-matrix B2" being horizontal, there are not enough
equations containing the non-measured variables (unknowns) with respect to the matrix B2". Therefore,
the non measured variables of B" cannot be determined (they occur in too few equations).
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Figure 7.3: Incidence matrix of non-measured variables: Non-calculable system

To make the system calculable, an additional measurement has to be chosen from the variables of the
sub-matrix B2". This variable will be added to the measured variables and the corresponding column in
the sub-matrix B2" will be eliminated. When a measure is selected, one repeats again the procedure of
searching for a non-calculable subsystem.

Can the measurements be validated?

Consider now that su�cient additional measurements have been made to ensure that the system can be
solved (positive or zero redundancy). Let's again analyze the incidence matrix and permute lines and
columns or vice and versa to try to isolate a sub-system of equations S2 containing a sub-matrix B2' and
a square sub-matrix B2" (Figure 7.4). The non-measured variables associated with the matrix B2"
are just computable because there are just enough equations to calculate them.

0B1

B2''B2'

E
q

u
at

io
n

s

Non-measured variables

S1 
validable subsystem
(B1 vertical)

S2=B2'+B2'' 
just calculable subsystem 
(B2'' square matrix)

variables candidates

S1
S2

Figure 7.4: Incidence matrix of non-measured variables: Calculable system.

In the global incidence matrix corresponding to "equations-variables measured and not measured" the
columns of the measured variables involved in the equations of the subsystem S1 are added at the left
side (Figure 7.5). The remaining measured variables cannot be validated because their values can be
arbitrarily �xed to their measured values: no equation allows to correct them.

Example: Figure 7.6 shows a process containing three units. The three substances are separated in
the unit A before entering the reactor B. The unit C separates the reaction products. In this case, we
consider that there is not enough measurements around the units A and C. The energy balance is only
generated for the reactor B while the mass balances are generated for all the units. Figure 7.7 shows the
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00 B1

B2''B2'
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Measured 
variables

S1 
validable subsystem
(B1 vertical matrix)

S2 
just calculable subsystem 
(B2'' square matrix)

just calculable
variables

Non-measured
variables 

S1
S2

invalidable
variables

A2' A2''

A1

Figure 7.5: Global Incidence matrix: Calculable system.

corresponding incidence matrix.

A

Reactor
B

F1

F2

F3
C

F4

F5

F6

3 substances : a, b, c

a+b -> c

Figure 7.6: Flowsheet.

a X X X

Mass balance A b X X X

c X X X

a X X X

Mass balance B b X X X

c X X X

Energy balance B X X X X X X X X

a X X X

Mass balance C b X X X

c X X X

Figure 7.7: Incidence matrix.

86



CHAPTER 7. DATA RECONCILIATION

Measured variables Non-mesured variables

Molar frac. F3 a X X X X

Molar frac. F4 a X X X X

Molar frac. F4 b X X X X

Molar flow F4 X X X X

a X X X

Energy bal.. B b X X X

c X X X

Energy bal.. B X X X X X X X X

a X X X

Energy bal.. A b X X X

c X X X

a X X

Energy bal.. C b X X

c X X

Molar flow F6 X X X X

Molar frac. F5 a X X X X

Molar frac. F5 b X X X X

Figure 7.8: Incidence matrix.

Figure 7.8 shows the measurements that can not be validated when the measured variables are:

� Temperature of the streams F4 and F5

� Total molar �owrate of the streams F4 and F6

� Mole fraction of the substance a in streams F3, F4 and F5

� Mole fraction of the substance b in the streams F4 and F5

� Molar partial �owrate of substances a, b and c in the stream F1

Are there over-speci�cations?

Consider a system whose resolution seems possible (positive or zero redundancy) and in which constants
have been introduced for certain measurements with a very small standard deviation. During the resolu-
tion, the variables corresponding to these measurements will be ignored and considered as real constants.
However, these constants might not be well chosen and the problem will be overspeci�ed. The analysis
of the incidence matrix "equations-variables" and the permutation of lines and columns allows to isolate
a subsystem of equations S1 whose matrix is vertical (Figure 7.9). Variables associated with this matrix
are overspeci�ed because there are too many equations to solve.

0AB1

AB2''AB2'

Measured and non-measured
variables

S1 
singular subsystem

overspecification

E
q

u
at

io
n

s

S2
S1 (AB1 vertical matrix) 

Figure 7.9: Incidence matrix: Overspeci�cation.
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In the global incidence matrix corresponding to "equations-variable+constants" the columns of the con-
stants involved in the equations of the S1 subsystem are added to the right (Figure 7.10). The constants
to make variable must be selected from these columns.

0AB1

AB2''AB2'

Measured and non-measured
variables

S1 
singular subsystem 
(AB1 vertical matrix)
Overspecification

E
q

u
at

io
n

s

S2
S1

Constants

constants candidates

Figure 7.10: Global incidence matrix: Overspeci�cation.

Search for trivial redundancy

The incidence matrix corresponding to "equations-variables" is analyzed and by permutation of the lines
and columns a subsystem of equations S1 whose matrix is squared is isolated (Figure 7.11). The variables
associated with this matrix are just calculable because there are just enough equations to calculate them.
If among these variables there are measured variables, their computed values are independent of the
measured values and these measures are worthless, they generate trivial redundancy.

0B1

B2''B2'

E
q

u
at

io
n

s

S1 
just calculable subsystem 
(B1 square matrix)

just calculable variables

S1
S2

Measured and non-measured
variables

Figure 7.11: Incidence matrix: Trivial redundancy.

Linear dependence in a subsystem

When a part of the �ow-sheet generates a just computable subsystem (square sub-matrix), the non-
measured variables, apparently just calculable, may be indeterminable. This is the case of loops in which
no action is given but for which it is necessary to measure a mass �owrate or thermal load to assess what
'turns' in the loop. A loop is identi�ed when a series of non-oriented streams forms a loop. It is the
case of recycling but also when a mixture is done on previously separate streams. Mathematically, the
square matrix is numerically singular, which can be detected by analysis of the incidence matrices. This
singularity can be highlighted by transforming the balance equation of one of the units of the loop in a
global balance around all units of the loop.
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A

C

B

y1 y2

y3

x1

x2
x3

Figure 7.12: Example: Flowsheet with loops.

Example For the example illustrated in Figure 7.12:

Measured �owrates Y1, y2, y3
Non-measured �owrates x1, x2, x3
Mass balance equations
unit A y1-x1-x2=0
unit B x1+x3-y2=0
unit C x2-x3-y3=0

Jacobian matrices:

A =

1 0 0
0 −1 0
0 0 −1

 B =

−1 −1 0
1 0 1
0 1 −1


The indencidence matrix 'equations-non measured variables' (matrix B) is obviously not singular but it
is numerically singular. Indeed, a singular incidence matrix is obtained by replacing the mass balance
equation of unit C by the overall mass balance equation:y1− y2 − y3 = 0. The corresponding Jacobian
matrices are:

A =

1 0 0
0 −1 0
1 −1 −1

 B =

−1 −1 0
1 0 1
0 0 0


Another method would be to separate the square matrix in triangular blocks and check, for each of them,
that all variables and equations of a given block are not involved in a 'loop': this problem has been solved
for a recycling of material. However, it should be noted that detecting such singularities becomes a very
di�cult task when one is faced with recycling of heat and matter.

The �ow-sheet of Figure 7.13 highlights a case of material and heat indeterminacy. The singularity is
located in the square block in the right corner of Figure 7.14. The analysis of such a system requires
some experience in validation of �owsheets.
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F1

F2

F3

F2'

F3'

F4

F5F5'F6F6'

DIV MEL

R1R2

ECH1

ECH2
3 SUBSTANCES a b c 

 1 2 2' 3 3' 4 5 5' 6 6'

a+b->c a+b->c

A1

A5A6

3 Trees 1.5. 6

10 Streams

Figure 7.13: Example: Flowsheet with loops (heat and matter).

Measured variables Non-measured variables

a X X X

R1 Mass balance b X X X

c X X X

R1 Energy bal.. X X X X X X X X

a X X X

R2 Mass balance b X X X

c X X X

R2 Energy bal. X X X X X X X X

Energy bal. 1 X X

DIV Energy bal. 2 X X

Mass balance X X

ECH1 Energy bal. X X X X X X X X X X X

ECH2 Energy bal. X X X X X X X X X X X

MEL Energy bal. X X X X X X X X

Figure 7.14: Incidence matrix of example with heat and matter loops.

7.2.5 Numerical method

The system is solved by a DOGLEG method. This implies that the correction made in the assessment
of the currentsolution is a combination of the correction of Newton and the direction of steepest descent
for the squared sum of the residuals of the equation system. Without going into the details, we can
say that the passage towards the direction of the greatest slope is even more important that the reduc-
tion of the squared sum of the residuals in the direction of Newton is small, when it is not completely zero.

The calculation of the Jacobian matrix required to determine these directions is partly analytical and
partly numerical. To save the calculation time, this matrix is not calculated at each iteration but according
to a chosen frequency. Its calculation also depends on the speed at which the solution is approached. The
matrix is stored using a technique of storage for sparse matrices; only non-zero matrix elements are stored.

It is reminded here that the second derivatives of the constraints over the measured and non-measured
variables is neglected. If the new point proposed by the method is outside the validity domain, the
software brings the point back within the area of validity by relaxing the proposed step. Depending on
the case, all variables are subject to relaxation, or only those who violate the physical constraints.

In almost all cases, the non convergence is to be attributed to the poor quality of the measurements, or
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to a lack of measurements which has not been detected by the analysis of the incidence matrix.

7.3 Sensitivity analysis

Previously, it has been shown that the validation problem (data reconciliation problem) can be expressed
as a constrained minimization problem. The subsequent developments imply that the constraints are
linear or that they have been linearized:

minX,Y (Y − y)TP (Y − y)

subject to the constraint: AY +BX + C = 0

The problem with constraints can also be transformed into a non-constrained problem by using the
Lagrange formulation:

minX,Y λ(Y − y)TP (Y − y) + 2λT (AY +BX + C)

Thus, the following system of equations is obtained:

PY +ATλ = Py

BTλ = 0

AY +BX = −C

A square matrix M and vectors V and D can be de�ned such that:

M =

P 0 AT

0 0 BT

A B 0

 V =

YX
λ

 D =

Py0
−C


In this way, the solution of the validation problem is written:

V =M−1D

7.3.1 Sensitivity matrix

The matrix M−1 is the sensitivity matrix of the system. The vectors X and Y are linear combinations
of the measured values y. The sensitivity matrix allows to evaluate how the validated value of a variable
depends on all the measured variables and their standard deviations. In particular:

Yi =

m+n+p∑
j=1

(M−1)ijDj

=

m∑
j=1

(M−1)ijPjjyj −
p∑
k=1

(M−1)i,n+m+kCk

Xi =

m+n+p∑
j=1

(M−1)n+i,jDj

=
m∑
j=1

(M−1)n+i,jPjjyj −
p∑
k=1

(M−1)n+i,n+m+kCk
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The variance of a linear combination Z of multiple variables Xj is calculated as follows:

Z =

m∑
j=1

aj ·Xj

var(Z) =
m∑
j=1

a2jvar(Xj) (7.4)

The estimation of the variance of the validated measured variables is given by:

var(Yi) =
m∑
j=1

{
(M−1

ij Pjj
}2
var(yj)

and for the estimation of the variance of the non-measured variables:

var(Xi) =
m∑
j=1

{
(M−1

n+i,jPjj
}2
var(yj)

These expressions can be simpli�ed by knowing that:

var(yi) =
1

Pjj

and therefore:

var(Yi) =
m∑
j=1

(M−1)2ij
var(yj)

var(Xi) =

m∑
j=1

(M−1)2n+i,j
var(yj)

(7.5)

7.3.2 Conclusions

The purpose of data reconciliation and validation is to improve the knowledge of the state variables of the
system. Providing values is of course a great help, but evaluating their reliability is equally important.
With this in mind that standard deviations for the validated variables and those not measured have been
developed.

Three types of questions can be analyzed by using sensitivity analysis:

� Check how the accuracy of a given state variable is in�uenced by the set of measurements: What
are the measurements that signi�cantly contribute to the variance of the validated result for a set
of state variables?

� Determine the state variables whose precision is the most in�uenced by a given measurement:
What are the state variables whose variance is in�uenced signi�cantly by the precision of a given
measurement?

� Study how the value of a state variable is in�uenced by the value and the standard deviation of the
set of measurements.
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From this information, decisions can be taken either for the analysis of the measurements of an existing
process, or during the design of a measuring system. Unnecessary analysis may be eliminated or made
less frequently, thus reducing the operating cost. One can also identify the key measurements for which an
accuracy improvement would allow better monitoring of the process. One can also determine the location
of the sensors to get a good estimate of all the key variables of the process at the lowest investment cost.

7.4 Summary

The key points of data reconciliation are summarized here and illustrated in Figure 7.15.

� Corrects the measurement values (most probable consistent values)

� Consistent with heat and mass balances and thermodynamic laws

� Considers balances as additional measures

� A posteriori precision of each value (measured and non-measured)

� Precision of performance indicators

� Sensitivity of measurements on performance indicators

� Quality of sensors

Figure 7.15: Measurement and parameter identi�cation.

The analogy between measurements and DOF analysis is compared in Table 7.3.

DOF analysis Measurements system analysis
-speci�cations -measurements
-over-speci�cations -redundancy
(spec to be suppressed) (more information)
-under-speci�cations -missing measurements
(add specs) (add measures)

Table 7.3: Analogy between measurements and DOF analysis.

More information about data reconciliation are found in the lecture notes of Prof. Georges Heyen at Uni-
versity of Liège http://www.lassc.ulg.ac.be/webCheng00/meca0468-1/Validation_intro.pdf and
http://www.lassc.ulg.ac.be/webCheng00/meca0468-1/Validation_review.pdf or in [19]
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Chapter 8

Model resolution: Mathematical

methods

This chapter recalls the main methods for solving nonlinear equations systems in the context of solving
energy system models or unit models. These methods have been presented in detail in the numerical
analysis course. This chapter is divided into two parts: a) the resolution of an equation with an unknown
(1 dimensional) and b) the resolution of an equation system (n dimensions). The most important methods
such as Newton-Raphson, Wegstein, Rubin and Runge-Kutta are described.

8.1 Resolution of 1 dimensional problems

The resolution of two types of equations is considered: explicit equations (f(x)=0) and the implicit
equations (x=f(x)). For the �rst type, the Newton-Raphson method and the Chord method are described,
while for the second type, the Wegstein method is described.

8.1.1 Newton-Raphson method

Description

The equation f(x)=0 has to be solved, knowing an approximate value x0 of the solution x∗. A Taylor
development gives:

f(x) = f(x0) + (x− x0)f ′(x0) +
(x− x0)2

2!
f ′′(x0) + ...

where f ′, f ′′, ... are the �rst, second,... derivative of the function f.

The Newton's approximation consists in neglecting the terms of order higher than one assuming that
x0 is su�ciently close to the solution x∗ and replacing the initial equation by the following approximate
linear equation:

f(x0) + (x− x0)f ′(x0) ∼= f(x∗) = 0

A value close to the root is given by:

x1 = x0 − f(x0)

f ′(x0)

This value must be a better estimation of the solution (this is not always the case!). To �nd the solution,
the recursion formula is used:
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xn+1 = xn − f(xn)

f ′(xn)

Geometrical interpretation

Figure 8.1: Geometrical interpretation: Newton's method (1 dimension).

Representing the curve y = f(x) in the coordinates system Oxy, the equation of the tangent to the curve
at the point fn with the x-coordinate xn is:

y − f(xn) = (x− xn)f ′(xn)

The intersection of the tangent with the x-axis (y=0) is (assuming that f ′(xn) ̸= 0) :

xn − f(xn)

f ′(xn) = xn+1

In the same way xn+2, xn+3 are obtained by drawing the tangents to the points fn+1 , fn+2, ... and in
seeking the intersection with the x-axis (Ox). That's why the Newton's method is also called the tangent
method.

Remarks

� Note that the successive values of x are found taking into account the signs of f(x) and f'(x). In
this case, to avoid divergence, a second form of recurrence inspired by Wegstein (see below) can be
used: x̃n+1 = q · x̃n + (1 − q)xn+1 (relaxation). This means in the example given before, that, on
the tangent through f0, one stops at a point de�ned by the value of q. q is known as relaxation
factor, if q=0 full step, if q� small steps and more iterations, if q� Newton step (direct convergence
if linear problem).

� The disadvantage of the Newton-Raphson method is that it requires the calculation of derivatives
and a good initial point.
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� If the function f(x) presents an extrema, it may happen that the method is divergent (Figure 8.2).
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Figure 8.2: Newton-Raphson method: divergence problem (multiple solution, wrong starting point).

To accelerate the convergence, one can take an ausculatrice of the quadratic curve instead of assimilating
the curve at a point to its tangent, this is the Richmond method.

8.1.2 Chord method or Regula-Falsi method

Figure 8.3: Geometrical interpretation: Chord method.

If there is no analytical expression of f(x), the Chord method which is similar to the one of Newton can
be applied. The tangent is replaced by the chord given by:

f(x)− f(xk) =
f(xk)− f(xk−1)

xk − xk−1
(x− xk)

the point xk+1 is obtained by setting f(xk+1) = 0, yielding the equation:
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xk+1 = xk − ψ−1f(xk)

with ψ =
f(xk)− f(xk−1)

xk − xk−1

This equation di�ers from that of Newton by the value ψ that is only an approximation of the inverse of
the derivative of f at the point xk.

� Advantages:

� No calculation of derivatives

� Robustness and speed identical to Newton-Raphson

� Disadvantages:

� Slow near the solution

� Initial point requirement as for Newton-Raphson

8.1.3 Wegstein method

This method is very interesting in the common case in chemistry, where one is led to solve implicit equa-
tions (x=f(x)), leading to solve ϕ(x) = x−f(x) = 0. Graphically, the solution is given by the intersection
of the bisector y=x with the curve y=f(x). The method is also based on an iterative process. Admit that
one has obtained a value of x after i iterations; the method illustrated in Figure 8.4) can be used to get
the next value:

Figure 8.4: Geometrical interpretation: Wegstein method.

1. Intersection of the linear slope x = xk with the curve y = f(x) −→ (xk, yk)

2. Intersection of the linear slope y = yk with the bisector y = x −→ (xk+1, yk)

3. Intersection of the linear slope x = xk+1 with the curve y = f(x) −→ (xk+1, yk+1)

By proceeding in this way, the implicit method is used which can diverge. Furthermore, the convergence
is very slow.

Wegstein proposes another procedure to avoid certain inconveniences of the implicit method and to
accelerate the convergence. To this end, he proposes to correct the value of xk+1 by drawing the chord
between the points k and k + 1 and seeking its intersection with the linear slope y = x. To get this new
value of xk+1, the following system has to be solved (ψ angle coe�cient of the chord (chord slope)):
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y − yk =
yk+1 − yk

xk+1 − x̃k
(xk − x̃k) = ψ(xk − x̃k)

y = x

Figure 8.5: Geometrical interpretation: Wegstein method.

This corresponds to search for q so that:

x̃k+1 = qx̃k + (1− q)xk+1

The chord will pass through the point (x̃k+1, x̃k+1) and as y = xk+1 this gives:

x̃k+1 − xk+1 = ψ(x̃k+1 − x̃k)

x̃k+1 =
1

1− ψ
(xk+1 − ψx̃k)

Therefore:

q =
−ψ
1− ψ

and 1− q =
1

1− ψ

In the case of the implicit method, it may converge in di�erent ways or even diverge, depending on the
value of ψ (the curve tangent) (Figure 8.6).
If ψ varies from −∞ to +∞, we will be able to observe, for the implicit method, the following phenomena
(see sec. 8.4.1):

� [−∞,−1]: oscillatory divergence

� [−1, 0]: oscillatory convergence

� [0, 1]: monotonic convergence

� [1,+∞]: monotonic divergence

The Wegstein method converges on the other hand, even in cases where the implicit method diverges.
However, according to Figure 8.7, we can see that q can take very large absolute values for 0.75<ψ<1.25.
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y

0 x

1

-1

0

+

-

Figure 8.6: Implicit method variation of ψ.

Figure 8.7: Wegstein method variation of ψ.

To restrict the advancement and to not deviate too much from the solution the absolute value of q has
to be limited.

The general procedure of calculation is:

Estimate the solution x0, and then compute the �rst two points: x1 = f(x0) and x2 = f(x1).
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Calculate q to correct x2

ψ =
x2 − x1

x1 − x0

Successively calculate:

x̃2 = qx1 + (1− q)x2

x3 = f(x̃2)

ψ =
x3 − x2

x̃2 − x1

x4 = f(x̃3)

...

ψ =
xk+1 − xk

x̃k − x̃k−1

xk+2 = f(x̃k+1)

and so on until the solution is reached. It is clear that in each iteration a test is done to see if the solution
is reached.

8.2 Resolution of n-dimensional problems

The resolution of n-dimensional problems is discussed here. For explicit equations, the Newton-Raphson
method, the method of the generalized secant method, and the Broyden method are considered. For the
implicit equations, the Rubin method is described.

8.2.1 Newton-Raphson method generalization to n-dimensions

The resolution of F (x = 0), where F is a vector function, corresponds, according to the mathematical
conventions, to:

f1(x) = f1(x1, x2, ..., xn) = 0

f2(x) = f2(x1, x2, ..., xn) = 0

fn(x) = fn(x1, x2, ..., xn) = 0

A starting vector x0 =t
[
x01...x

0
n

]
is chosen and by analogy with the one-dimensional case, the n-

dimensional Taylor development is limited to the terms of the �rst derivatives, which gives:

fi(x) = fi(x
0) +

∑n
j=1

(
δfi
δxj

)
x0

·∆xj = 0 ; i=1,...,n

with ∆xj = xj − x0j

In matrix form, this system of equations is written:



δf1
δx1

· · · δf1
δxj

· · · δf1
δxn

...
. . .

...
...

δfi
δx1

· · · δfi
δxj

· · · δfi
δxn

...
...

. . .
...

δfn
δx1

· · · δfn
δxj

· · · δfn
δxn


·


δx1
· · ·
δxi
· · ·
δxn

+


f1(x

0)
· · ·

fi(x
0)

· · ·
fn(x

0)

 =


f1(x)
· · ·
fi(x)
· · ·
fn(x)


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where the partial derivatives are calculated at the point x0. This is written in the condensed (and
conventional) form:

tJ ·∆x+ F (x0) = F (x)

This leads to:

x1 = x0 −t J−1

x0 F (x
0)

and for the (n+1)th term:

xn+1 = xn −t J−1

xnF (x
n)

the transposed Jacobian matrix being calculated in xn.

Remarks :

� The method requires a matrix inversion, it is therefore necessary that the Jacobian matrix J is
non-singular.

� At each iteration, the matrix J must be recalculated, which corresponds each time to nxn deriva-
tives, n functions and the inverse of a matrix (nxn).

� A convergence process based on Wegstein can be applied: x̃n+1 = x̃n −t J−1

xnF (x̃
n)(1 − q) At the

beginning, it is advantageous to choose a large q and decrease it thereafter. In fact, far from the
solution, one should advance in small steps, while near the solution, one can progress faster.

8.2.2 Generalized secant method

Newton's method described previously presents the disadvantage of having to recalculate the Jacobian
at each iteration. However, it is possible to develop an algorithm that renews the Jacobian in a slightly
di�erent way. The generalized secant method is described �rst and than the Broyden method which is
similar.

The n-dimensional system to be solved is F (x = 0). This system can contain implicit equations, since
these can always be reduced in an explicit form. The vector x has to found such that e = F (x) = 0.

One can try to solve this system by �nding the linear functions that approximate the non-linear functions.
Then one can �nd the zeros of these linear functions and hope that they are close to the zeros (solution)
of the non-linear system.
Suppose that:

x0 e0 = F (x0)
x1 e1 = F (x1)
x2 e0 = F (x2)
...

...
xn en = F (xn)

A linear model e∗ = A · x+ b can be written to reproduce these data and accordingly:

e0 = A · x0 + b
e1 = A · x1 + b
...
en = A · xn + b
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The matrix A has nxn unknowns and the vector b n unknowns. To solve this system, there are (n+1)xn
linear equations, and consequently the solution can be found. First the vector b can be eliminated by
writing:

∆e1 = e1 − e0 = A(x1 − x0) = A ·∆x1
...
∆en = en − en−1 = A(xn − xn−1) = A ·∆xn

Which leads to the system:

∆E = A ·∆X

And therefore A is given by the following expression if the matrix ∆X has an inverse. Since ∆X is
completely under our control (we choose x), an inverse can be guaranteed.

A = ∆E ·∆X−1

The values for b can be found with b = e−∆A ·xn. The following value of x can be estimated by the one

that makes e∗ = 0. This step induces the resolution of a system of linear equations e∗ = 0 = ∆A·xn+1+b.
Which gives
xn+1 = −∆A−1b = −∆A−1(en −∆A · xn) = xn −∆A−1en

Improvement of the generalized secant method

The approach presented above implies that at each step the matrix A has to be recalculated from the
original data. It is however possible to develop algorithms that modify A in another way. Suppose that

A can be estimated by a matrix called A1. Suppose that ∆e1 has been evaluated for a given ∆x1. One

would like to obtain a matrix A2 such that:

∆e1 = A2 ·∆x1

To get A2, A1 can be changed in the following way:

A2 = A1 + u1 ·t v1

This results in

∆e1 =
[
A1 + u1 ·t v1

]
∆x1

v1 can be chosen arbitrarily and u1 is given by:

u1 =
∆e1 −A1 ·∆x1

tv1 ·∆x1

As long as v1 is not orthogonal to x1, the vector u1 is well de�ned and therefore the matrix A2 can be

obtained from the matrix A1.

To get a second point∆e2, for the stage x2, where x2 can for example be the result of: x2 = x1−(A2)−1e1.

With ∆x2 = x2 − x1, one may then try to have:
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∆e2 = A3 ·∆x2 =
[
A2 + u2 ·t v2

]
∆x2

u2 and v2 can easily be found as before, but A3 has also to satisfy:

∆e1 = A3 ·∆x1 =
[
A2 + u2 ·t v2

]
∆x1

If u2 ·t v2 ·∆x1 is equal to the zero vector, then the equation above is reduced to the de�nition equation
of A2 and would therefore be satis�ed. v2 has therefore to be chosen orthogonal to x1. One solution is to

choose the vector v2 equal to the vector x2 orthogonalized with respect to x1. In this case, the equation
to get v2 is:

v2 = ∆x2 −
[
t∆x1 ·∆x2

]
∆x1

tv1 ·∆x1

One then gets another point ∆e3 for the stage ∆x3 and can impose that:

∆e3 = A4 ·∆x3

with

∆e1 = A4 ·∆x1

∆e2 = A4 ·∆x2

For A4 = A3 + u3 ·t v3, v3 should be orthogonal to ∆x1 and ∆x2 .This result can be generalized by:

Ai+1 = Ai +
∆ei −Ai ·∆xi

tvi ·∆xi

t

vi

where vi is orthogonalized with regard to (i-1) predecessors ∆xi.

8.2.3 Broyden method

There is a great similarity between the Broyden method and the generalized secant method. Only one
step of the algorithm distinguishes them. However the Broyden method performs better in terms of time
usage and computation memory. Instead of selecting a new matrix in a way that the previous steps are
satis�ed, the Broyden algorithm requires that (the vectors z being orthogonal to ∆xi):

Ai+1z = Aiz

The advantage is that the di�erent ∆xi have no longer to be stored since all the information will be
retained in the matrix A. As previously:

∆ei = Ai+1 ·∆xi =
[
Ai + ui

t
vi
]
∆xi
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And for each vector z ̸= 0 orthogonal to ∆xi

[
Ai + ui

t
vi
]
∆z = Ai ·∆z

If vi = ∆xi, tvi · z =t ∆xi · z = 0, if and only if z ̸= 0 orthogonal to ∆xi. With this choice, one gets:

ui =
∆ei −Ai ·∆xi
t∆xi ·∆xi

Ai+1 = Ai +
∆ei −Ai ·∆xi
t∆xi ·∆xi

t

∆xi

The advantage of the Broyden method compared to the generalized secant method is, as said earlier,
that it is not necessary to preserve the vectors ∆xi . However the disadvantage is that the convergence
is linear, while the secant method converges quadratically.

Rubin method (quasi Newton)

In various mathematical models discussed previously, it was shown that some of them took the form:
xk+1 = ψ(xk). Where ψ is an operator and not necessarily an analytic vector function (here the case
where it is a vector ψ is considered).

Example. As this situation occurs frequently in the calculations of a �owsheet, let's consider a simpli�ed
example (Figure 8.8):

 

MIX REACTOR

S 

E 

P

DIV
xkxk+1

6 7

4

32

5

1

Figure 8.8: Process �owsheet.

The process involves a reactor R, a separator S, a splitter D and a mixer J. The input stream 1 is known,
as well as the equipment models. The output streams 5 and 7 have to be calculated, which requires also
to calculate all �ows internal to the loop (2,3,4 and 6). It is therefore necessary to iterate over the values
of the parameters of the stream 6 contained in the vector x. During the iteration, the problem of how to
improve the convergence is faced (like in the Wegstein method getting faster or arrive to the solution).

The method is the one of the generalized chord, but applied to the particular shape of the vector function
to solve: x − ψ(x) = 0 where x and ψ are a vector and a vector function, respectively. One can expect
to estimate a Jacobian of this function.
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If ψ(x) is analytical:

f(x) = x− ψ(x) = 0

By applying the Newton's method, this gives:

xk+1 = xk −
{
tJ
[
f(xk)

]}−1
f(xk)

xk+1 = xk −
{
E −t J

[
ψ(xk)

]}−1 [
xk − ψ(xk)

]
Therefore, looking for an approximation of the Jacobian of ψ becomes the objectif. The Taylor develop-
ment of these recurrence functions (limited to the �rst term) becomes:

ψ1(x) = ψ1(x
k) +

(
δψ1

δx1

)k
·
(
x1 − xk1

)
+ . . .+

(
δψ1

δxn

)k
·
(
xn − xkn

)
. . .

ψj(x) = ψj(x
k) +

(
δψj
δx1

)k
·
(
x1 − xk1

)
+ . . .+

(
δψj
δxn

)k
·
(
xn − xkn

)
. . .

ψn(x) = ψn(x
k) +

(
δψn
δx1

)k
·
(
x1 − xk1

)
+ . . .+

(
δψn
δxn

)k
·
(
xn − xkn

)
where k is the number of iterations, j indicates the element and n the dimension of the problem (number
of variables). This is written in vector form:

ψ(x) = ψ(xk) +
{
tJ
[
ψ(xk)

]}
∆xk

With respect to the resolution perspective, the vectors x1, x2, x3, ..., xk can be known after k iterations,
as well as ψ(xk+1)−ψ(xk). Indeed, the implicit method gives (assume that it has started at a point x0):

xkj = ψj(x
k−1) (element j, iteration k). However, for a system of n equations, there are n2 unknowns

which are the derivatives of ψ with regard to x (for each x and ψ). After an iteration, there are n
equations, and after n iterations, there are n2 equations and the expression of the Jacobian can therefore
be obtained. To obtain this, two matrices C and D are used to store the information given by each
iteration. In matrix form, the system to be solved is:

ψ(x)− ψ(xk) =
{
tJ
[
ψ(xk)

]}
∆xk

And in the condensed form tB =t J tA or tBtA−1 =t J and J = A−1B
with

A =



x11 − x01 · · · x1j − x0j · · · x1n − x0n
...

. . .
...

...
xk1 − x01 · · · xkj − x0j · · · xkn − x0n

...
...

. . .
...

xn1 − x01 · · · xnj − x0j · · · xnn − x0n



B =



ψ1(x
1)− ψ1(x

0) · · · ψj(x
1)− ψj(x

0) · · · ψn(x
1)− ψn(x

0)
...

. . .
...

...
ψ1(x

k)− ψ1(x
0) · · · ψj(x

k)− ψj(x
0) · · · ψn(x

k)− ψn(x
0)

...
...

. . .
...

ψ1(x
n)− ψ1(x

0) · · · ψj(x
n)− ψj(x

0) · · · ψn(x
n)− ψn(x

0)


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The Jacobian J is obtained by inverting A and multiplying by B. From a numerical point of view,
to obtain the transposed Jacobian matrix, n iterations are performed by simple substitution, and the
information is stored in 2 matrices C and D :

C =



x01 · · · x0j · · · x0n
x11 · · · x1j · · · x1n
...

. . .
...

...
xk1 · · · xkj · · · xkn
...

...
. . .

...
xn1 · · · xnj · · · xnn



D =



ψ1(x
0) · · · ψj(x

0) · · · ψn(x
0)

ψ1(x
1) · · · ψj(x

1) · · · ψn(x
1)

...
. . .

...
...

ψ1(x
k) · · · ψj(x

k) · · · ψn(x
k)

...
...

. . .
...

ψ1(x
n) · · · ψj(x

n) · · · ψn(x
n)


These two matrices have each (n+1) rows and n columns. A and B are obtained by subtracting in each
matrix the �rst line to all the others. However, the Jacobian calculated in this way is the one at the
point x0. It is preferable to calculate it after n iterations. For this reason, the �rst obtained information
will be stored by starting with the last line (it is as if the matrices C and D were returned with regard
to the horizontal).

At the point xn one has J(ψ) = A−1B. The (n+1)th iteration gives xn+1 by xn+1 = ψ(xn). This value
is then corrected in the following way:

x̃n+1 = xn −
{
E −t (A−1B)

}−1 [
xn − ψ(xn)

]
The Rubin method is therefore a Newton-Raphson method which has been modi�ed to allow the estima-
tion of the Jacobian, because in the case of the �owsheet, the function ψ(x) is not known analytically. This
method is also called the generalized chord method. In fact, the calculation of the Jacobian based on the

matrices A and B corresponds to estimating the slope of the chord between two points
ψj(x

k)−ψj(x
n)

xk
j−xn

j

= pj .

In order to further accelerate the convergence, the Wegstein method can be applied on the most sensitive
variable (that which has been the most modi�ed).

8.3 Solving di�erential equations: the Runge-Kutta method

The purpose of the Runge-Kutta method is to obtain an approximate numerical solution from a non-linear
ordinary di�erential equation or a system of nonlinear ordinary di�erential equations.
Consider �rst the case of one equation, given by:

dy

dx
= y′ = f [x, y(x)]

with the initial conditions:y(x0) = y0 where x0 is the initial point.

The slope of the function y, allows to estimate the value of y at a point x0 + h where h is the integration
interval.

If yn = y(x0 + nh) is the estimation of the function y the Taylor development (centered at xn ) gives
after n steps of integration:
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 y

x0 n+1
x

n
x

n
y

n+1
y

y(xn+1) = y(xn + h)

= y(xn) + h · y′(xn) + h2

2!
y′′(xn) +

h3

3!
y′′′(xn) + .... (8.1)

Knowing y′ = f(x, y), one tries to obtain an approximation of y′′, y′′′, .... All these derivatives taken at
the same point, one has:

y′′ =
dy′

dx
=
df

dx
=
δf

δy
· δy
δx

+
δf

δx
= fy · f + fx

y′′′ =
dy′′

dx
=

d

dx
(fy · f + fx) =

δ

δy
(fy · f + fx)

δy

δx
+

δ

δx
(fy · f + fx)

= fxx + 2 · f · fxy + f2fyy + fy(fy · f + fx)

where fx = δ
δx , fxy = δ2

δxδy and noting that in this case dy
dx = δy

δx .

Introducing the values of y′′ in Eq. 8.1 and one gets Eq. 8.2:

∆yn+1 = yn+1 − yn = h · f +
h2

2!
(fx + fy · f) (8.2)

Then one searches an expression of yn+1 involving only estimates of the function f at a speci�c point:

yn+1 = yn +N0 · k0 +N1 · k1 +N2 · k2 + ....

k0 = h · f(xn, yn)
k1 = h · f(xn + α1 · h, yn + β10 · k0)
k2 = h · f(xn + α2 · h, yn + β20 · k0 + β21 · k1)
k3 = h · f(xn + α3 · h, yn + β30 · k0 + β31 · k1 + β32 · k2)

If one develops k1 by dropping the second order term, one gets:

k1 = h · (f + α1 · h · fx + β10 · k0 · fy)

Consequently:
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∆yn+1 = N0 · h · f +N1 · h · (f + α1 · h · fx + β10 · k0 · fy) (8.3)

The comparison of the h terms of Eq. 8.2 and Eq. 8.3 gives:

h · f 7−→ N0 +N1 = 1

h2 · fx 7−→ N1 · α1 = 1/2

h2 · fy · f 7−→ N1 · β12 = 1/2

There are three relations for four parameters; consequently there is an in�nite number of solutions that
can be written in the form:

N0 = 1− 1

2 · α1

N1 =
1

2 · α1

β12 = α1

Taking α1 = 1, on has that N0 = 1/2, N1 = 1/2 and β10 = 1 and

k0 = h · f(xn, yn)
k1 = h · f(xn + h, yn + k0)

yn+1 = yn +
1

2
(k0 + k1)

In the third order, there are 8 parameters for 6 equations, in the fourth order, 13 parameters for 10
equations, etc. The method that is used here is the one that has been developed by Runge which is a
method of the 4th order. With Table 8.1 one gets:

N0 N1 N2 N3 α1 α2 α3 β10 β20 β21 β30 β31

RUNGE 1/6 2/6 2/6 1/6 1/2 1/2 1 1/2 0 1/2 0 0 1

KUTTA 1/8 3/8 3/8 1/8 1/3 2/3 1 1/3 1/3 1 1 -1 1

Table 8.1: Runge and Kutta values

k0 = h · f(xn, yn)
k1 = h · f(xn + h/2, yn + k0/2)

k2 = h · f(xn + h/2, yn + k1/2)

k3 = h · f(xn + h, yn + k2)

∆yn+1 =
1

6
· (k0 + 2 · k1 + 2 · k2 + k3)

If there are several di�erential equations, the development will be the same but it will apply to the vector
functions. In this case however, there will be interest to weight the equations so that the variations of each
are of the same order of magnitude. The system to be solved is then (with α, β, γ weighting coe�cients):

α · f1(x) =
dy1
dx

β · f2(x) =
dy2
dx

γ · f3(x) =
dy3
dx
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8.4 Numerical applications

Through some numerical examples the use of some of the models that have been described are illustrated.

8.4.1 Comparison between simple substitution and Wegstein method

.

First case: monotonic convergence

Figure 8.9: Monotonic convergence.
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Second case: oscillatory convergence (only for simple substitution)

Figure 8.10: Oscillatory convergence.

Third case: monotonic divergence (only for simple substitution)

Figure 8.11: Monotonic divergence.
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Figure 8.12: Oscillatory divergence.

Fourth case: oscillatory divergence (only for simple substitution)

8.4.2 Comparison between simple substitution and Rubin method
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 Rubin

x1=1.4 racine(1+x2)-0.4 x1

x2=1.5 racine(x1) -0.5 x2 +1.5

Iter x1 x2 f1 f2

1 4,0000 5,0000 1,8293 2,0000

2 1,8293 2,0000 1,6932 2,5288

3 1,6932 2,5288 1,9526 2,1874

Iter x1 x2 f1 f2 x1-f1 x2-f2

4 1,8071 2,3325 1,8329 2,3501 -0,0258 -0,0176

C 1,8071 2,3325 D 1,8329 2,3501

1,8293 2,0000 1,6932 2,5288

1,6932 2,5288 1,9526 2,1874

A 0,0222 -0,3325 B -0,1397 0,1786

-0,1139 0,1962 0,1197 -0,1627

A-1 -5,8552 -9,9218 (A-1).B= J -0,3697 0,5684

-3,3986 -0,6631 0,3956 -0,4992

E-J 1,3697 -0,5684 (E-J)-1 0,8199 0,3108

-0,3956 1,4992 0,2163 0,7490

Iter x1 x2 f1 f2 x1-f1 x2-f2

5 1,8337 2,3513 1,8294 2,3556 0,0043 -0,0043

ligne  modifier 2

Modif C 1,8071 2,3325 modif D 1,8329 2,3501

1,8337 2,3513 1,8294 2,3556

1,6932 2,5288 1,9526 2,1874
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8.4.3 n-dimensional Newton-Raphson method

 f1=x1^2-x2-1

f2=x1-(x2-1)^2

Newton-Raphson

Iter x1 x2 f1 f2 J J-1

1 5,000 5,000 19,000 -11,000 10 -1 0,1013 -0,0127

1 -8 0,0127 -0,1266

2 2,937 3,367 4,257 -2,666 5,87342 -1 0,1766 -0,0373

1 -4,7342 0,0373 -0,2191

3 2,085 2,624 0,725 -0,552 4,17076 -1 0,2589 -0,0797

1 -3,2481 0,0797 -0,3324

4 1,854 2,383 0,054 -0,058 3,7075 -1 0,2989 -0,1081

1 -2,7655 0,1081 -0,4007

5 1,831 2,354 0,000 -0,001 3,66285 -1 0,3036 -0,1122

1 -2,7072 0,1122 -0,4108

6 1,831 2,353 0,000 0,000 3,66235 -1 0,3037 -0,1122

1 -2,7064 0,1122 -0,4110

7 1,831 2,353 0,000 0,000 3,66235 -1 0,3037 -0,1122

1 -2,7064 0,1122 -0,4110

8 1,831 2,353 0,000 0,000 3,66235 -1 0,3037 -0,1122

1 -2,7064 0,1122 -0,4110

9 1,831 2,353 0,000 0,000 3,66235 -1 0,3037 -0,1122

1 -2,7064 0,1122 -0,4110

10 1,831 2,353 0,000 0,000 3,66235 -1 0,3037 -0,1122

1 -2,7064 0,1122 -0,4110

11 1,831 2,353 0,000 0,000 3,66235 -1 0,3037 -0,1122

1 -2,7064 0,1122 -0,4110
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Figure 8.13: F1 according to x1 and x2.
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Figure 8.14: F2 according to x1 and x2.
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